跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 21:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭文龍
研究生(外文):W.L.Cheng
論文名稱:軟X光光學元件之研製
論文名稱(外文):Study and Fabrication of the Soft X-ray Optical Device
指導教授:周學韜許鉦宗
指導教授(外文):H. T. ChouJ. T. Sheu
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:60
中文關鍵詞:反射式光柵波帶片掃瞄探針微影術電子束直寫微影
外文關鍵詞:reflection gratingzone platescanning probe lithographyE-beam direct writing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要探討軟X光光學元件中反射式繞射光柵與波帶片的特性與製作,繞射光柵在光學元件是重要的元件之一,應用在軟X光的波長範圍時,由於X光很難經由光學透鏡達到反射與折射,加上光柵細小線寬的需求,使得光柵在製作上更加困難,本研究利用一種新的技術-掃瞄式探針微影術與濕式蝕刻的方式,可製作出反射式繞射光柵的結構。當原子力顯微鏡中的探針外加偏壓在(110)晶向的矽晶片上掃瞄,探針與矽晶片的表面會感應電場產生氧化層,利用這氧化層當成濕式蝕刻的遮罩層,由於晶向蝕刻的技術,使得(110)晶向的矽晶片能蝕刻出形態為U型的光柵結構。波帶片的結構可視為是環形的繞射光柵,應用在X光顯微鏡中能作為聚焦的元件。製作時係利用電子束直寫曝光的方式將波帶片的圖案定義出來,然後利用lift-off的方式將圖案轉移成波帶片的結構。在實驗之前,分別針對反射式繞射光柵及波帶片的元件特性作模擬的研究,在反射式繞射光柵方面,影響繞射效率的因素包括入射光波長、凹谷的寬度、凹谷的深度、入射角度以及金屬材料的選擇等等。在波帶片方面,影響繞射效率的因素包括入射光能量、波帶的厚度、波帶材料的選擇以及中心擋環與整個波帶片的比例等等。依據模擬的結果,本研究已經製作出適合入射光波長為13.42nm與入射角為8°時,線寬為96nm的反射式繞射光柵及發展出適合入射光能量為700eV與阻障比為0.5的中心擋環時,最外環波帶的線寬結構。

The thesis studied the fabrication and properties of the reflection diffraction grating and zone plate of the soft x-ray optical device. It is difficult to fabricate grating structure because X-ray is not easily reflected and refracted by optic lens and the linewidth of grating is very small. A novel technique, scanning probe lithography (SPL), followed with wet etching can be used to fabricate nano-structure of the reflection diffraction grating. The atomic force microscope (AFM) with tip-biasing capability was adopted to induce anodic oxidation on (110) silicon wafer. The field-induced oxide was used as hard mask to generate grating pattern. By controlling the timing of the wet etching process and utilizing orientation-dependent etching (ODE) straight sidewalls and U groove of x-ray grating structures can be achieved. The zone plate structure can be looked upon as the circular diffraction grating that was used as focusing optics in the application of x-ray microscopy. E-beam direct writing was adopted to write pattern of zone plate and the pattern was transfered into zone plate structure with lift-off process. Before experiment, optimal conditions and mechanism of the reflection diffraction grating and zone plate were investigated with the simulation. In the reflection diffraction grating, the diffraction efficiency is affected by many factors, which include the wavelength, pitch, groove depth, incident angle and sputtering metal materials. In the zone plate, the diffraction efficiency is decided by energy of incident light, thickness, materials and ratio of central stop. According to the results of simulation, 96 nm linewidth of the grating structure for 13.42 nm soft x-ray with 8° of the grazing incident angle was fabricated, and the variable linewidth of outmost zone of the zone plate structure with 700 eV energy and 0.5 of obstructive ratio of the central stop were developed.

中文摘要…………………………………………………………i
英文摘要…………………………………………………………ii
誌謝…………………………………………………………iii
目錄…………………………………………………………iv
表目錄…………………………………………………………v
圖目錄…………………………………………………………vi
第一章緒論……………………………………………………1
第二章X光光學元件……………………………………………6
2.1X光與物質間的相互作用………………….6
2.2X光的折射與吸收……………………………6
2.3反射式光學元件……………………………8
2.3.1掠入射反射鏡………………………………8
2.3.2多層膜反射鏡………………………………9
2.4繞射式光學元件……………………………10
2.4.1繞射光柵……………………………………10
2.4.2波帶片………………………………………12
2.4.2.1菲涅耳波帶片………………………………12
2.4.2.1.1分辨率………………………………………13
2.4.2.1.2波帶片之效率………………………………14
2.4.2.2相位型波帶片………………………………14
2.4.2.3中心擋環的效用……………………………15
第三章軟X光光學元件特性模擬………………………………17
3.1反射式繞射光柵……………………………17
3.2波帶片………………………………………24
第四章實驗理論與方法…… ………………………………30
4.1繞射光柵製作………………………………30
4.2波帶片製作…………………………………45
第五章結論與未來工作………………………………………50
參考文獻…………………………………………………………57

[1]謝行恕,賈成芝,1995,同步輻射X射線顯微成像,聯經,台北。
[2]Chris Jacobsen, 1999, “Soft X-ray Microscopy”, Cell Biology, vol. 9, pp.44-47, February.
[3]Mark L. Schattenburg, Robert C. Fleming, Ralf Heilmann, Edward Murphy, Claude R. Canizares, Henry I. Smith, “Super-smooth X-ray Reflection Gratings”, Annual report 2000, 19, Nano Structures Laboratory.
[4]Steven J. Spector, 1997, Diffractive Optics for Soft X Rays, Physics State University.
[5]Timothy A. Savas, James M. Carter, Edward Murphy, Mark L. Schattenburg Henry I. Smith, “Transmission Gratings for X-ray and Atom-Beam Spectroscopy and Interferometry”, Annual report 2000, 21, Nano Structures Laboratory.
[6]G. Schmahl, D. Rudolph, G. Schneider, J. Thieme, T. Schliebe, B. Kaulich, “Diffraction Optics for X-ray Imaging”, Microelectronic Engineering, vol. 32, pp.351-367.
[7]Alan Michette, Slawka Pfauntsch, 1996, X-rays The First Hundred Years.
[8]David Halliday, Robert Resnick, 1993,基本物理學下冊,侯瑞琳譯,新陸書局,台北。
[9]Hiroshi Fukuda, Tsuneo Terasawa, 1995, “Design and Analysis of Diffraction Mirror Optics for EUV Projection Lithography”, Microelectronic Engineering, vol. 27, pp.239-242.
[10]A. Franks, K. Lindsey, J. M. Bennett, R. J. Speer, D. Turner, D. J. Hunt, 1975, “The Theory, Manufacture, Structure and Performance of N.P.L. X-ray Gratings”, Philosophical Transacficns of Royal Society of London, Ser. A, pp.503-543, January.
[11]Zheng G. Chen, 1998, Lithography Based Microfabrication: Diffractive Optics and ULSI Nanostructures, University of Wisconsin-Madison.
[12]J. T. Sheu, M. H. Chiang, S. Su, 1997, “The Fabrication of Pi-phase Shift X-ray Zone Plates”, Proc. Natl. Sci. Counc. ROC(A), vol. 21, pp.611-615.
[13]C. N. Chang, C. I. Chen, Y. F. Song, P. C. Tseng, L. R. Huang, 1989, The Specifications for the Optical Components of the 6M SGM Beam Line at SRRC, SRRC, Taiwan.
[14]A. G. Michette, C. J. Buckley, 1993, X-ray Science and Technology.
[15]B. Niemann, T. Schliebe, R. Plontke, O. Fortagne, I. Stolberg, M. Zierbock, 1996, “A Special method to Create Gratings of Variable Line Density by Low Voltage Electron Beam Lithography”, Microelectronic Engineering, vol. 30, pp.49-52.
[16]A. Klumpp, K. Kühl, U. Schaber, H. U. Kaufl, W. Lang, 1995, “Anisotropic Etching for Optical Gratings”, Sensors and Actuators Physical A, vol. 51, pp.77-80.
[17]J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, J. Bennett, 1990, “Modification of Hydrogen-passivated Silicon by a Scanning Tunneling Microscope Operation in Air”, Applied Physics Letters, vol. 56, pp.2001-2003
[18]Elain S. Fu, Xue-sen Wang, Ellen D. Williams, 1999, “Characterization of Structures Fabricated by Atomic Force Microscope Lithography”, Surface Science, vol. 438, pp.58-67
[19]Hiroyuki Sugimura, Nobuyuki Nakagiri, 1995, “Area Selective Deposition of Gold on Silicon Surface Patterned by Tip-induced Anodization in Scanning Probe Microscopy”, Applied Physics Letters, vol.66, pp.1430-1431.
[20]S. Gwo, C. L. Yeh, P., F. Chen, Y. C. Chou, T. T. Chen, 1998, “Local Electric-field-induced oxidation of Titanium Nitride Films”, Applied Physics Letters, vol. 74, pp.1090-1992.
[21]Dawen Wang, Liming Tsau, K. L. Wang, 1995, “Nanofabrication of Thin Chromium Film Deposited on Si(110) Surfaces by Tip Induced Anodization in Atomic Force Microscopy”, Applied Physics Letters, vol. 67, pp.1295-1297.
[22]F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, 1999, “Nanomachining of (110)-oriented Silicon by Scanning Probe Lithography and Anisotropic Wet Etching”, Applied Physics Letters, vol. 75, pp.2429-2431.
[23]V. K. Dwivedi, R. Gopal, S. Ahmad, 2000, “Fabrication of Very Smooth Walls and Bottoms of Silicon Microchannels for Heat Dissipation of Semiconductor Devices”, Microelectronics Journal, vol. 31, pp.405-410.
[24]Hiroyuki Sugimura, Tatsuya Uchida, Noboru Kitamura, Hiroshi Masuhara, “Tip-induced Anodization of Titanium Surface by Scanning Tunneling Microscopy: A Humidity Effect on Nanolithography”, Applied Physics Letters, vol. 63, pp.1288-1290.
[25]H. Jungblut, D. Wille, H. J. Lewerenz, 2001, “Nano-oxidation of H-terminated p-Si(100): Influence of the Humidity on Growth and Surface Properties of oxide islands”, Applied Physics Letters, vol. 78, pp.168-170.
[26]K. Morimoto, Francesc Pérez-Murano, J. A. Dagata, 2000, “Density Variations in Scanned Probe Oxidation”, Applied Surface Science, vol. 158, pp.205-216.
[27]E. S. Snow, P. M. Campbell, 1994, “Fabrication of Si Nanostructures with an Atomic Force Microscope”, Applied Physics Letters, vol. 64, pp. 1932-1934.
[28]Kazuo Sato, Mitsuhiro Shikida, Yoshihiro Matsushima, Takashi Yamashiro, “Characterization of Orientation-dependent Etching Properties of Single-crystal Silicon: Effects of KOH Concentration”, Sensors and Actuators A:Physical , vol. 64, pp.87-93.
[29]C. F. Quate, 1997, “Scanning Probes as a Lithography Tool for Nanostructures”, Surface Science, vol. 386, pp.259-264.
[30]S. C. Minne, Ph. Flueckiger, H. T. Soh, C. F. Quate, 1995, “Atomic Force Microscope Lithography Using Amorphous Silicon as a Resist and Advances in Parallel Operation”, Journal of Vacuum Science and Technology B, vol. 13, pp.1380-1385.
[31]F. S. S. Shien, J. W. Chang, S. W. Lin, Y. C. Chou, T. T. Chen, S. Gwo, 2000, “Nanometer-scale Conversion of Si3N4 to SiOx”, Applied Physics Letters, vol. 76, pp.1-3.
[32]Zheng G. Chen, 1998, Lithography Based Microfabrication: Diffractive Optics and ULSI Nanostructures, University of Wisconsin-Madison.
[33]W. Leitenberger, T. Weitkamp, M. Drakopoulos, I. Snigireva, A. Snigirev, 2000, “Microscopic Imaging and Holography with Hard X-rays using Fresnel Zone-plate”, Optics Communications, vol. 180, pp.233-238.
[34]M. Peuker, G. Schneider, D. Weiss, “High Resolution Phase Zone Plates for Water Window Wavelengths”, Part of the SPIE Conference on X-Ray Microfocusing: Applications and Techniques, vol. 3449, pp.118-128.
[35]S. J. Spector, C. J. Jacobsen, “Process Optimization for Production of Sub-20 nm Soft X-ray Zone Plates”, Journal of Vacuum Science and Technology B, vol. 15, pp.2872-2876.
[36]B. Lai, W. Yun, J. Maser, Z. Cai, W. Rodrigues, D. Legnini, Z. Chen, A. A. Krasnoperova, Y. Vladimirsky, F. Cerrina, E. D. Fabrizio, M. Gentili, “Advanced Zone Plate Microfocusing Optics”, Part of the SPIE Conference on X-Ray Microfocusing: Applications and Techniques, vol. 3449, pp.133-136.
[37]B. Kaulich, 1998, “Phase Zone Plates for Hard X-ray Microscopy”, Part of the SPIE Conference on X-Ray Microfocusing: Applications and Techniques, vol. 3449, pp.108-117.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王慧娥 (1999)。 重視人才養成促進產業進步。流通世界雜誌,105,63-69。
2. 尤敏君 (1996)。 連鎖體系之經營型態與策略分析。 臺灣經濟研究月刊,19(5)=221,39-44。 
3. 邱滿艷 (1998)。 職業分析的涵義、類別與應用。就業與訓練,16(2),49-56。
4. 邱國雄 (1996)。 店舖繁榮策略─連鎖化經營基礎。流通世界雜誌,67,
5. 李盛雄 (1998)。 連鎖業。臺北銀行月刊,28:7=333,130-133。
6. 林原輝 (1993a)。 服務品質是致勝關鍵─餐飲業服務人員的訓練安排。管理雜誌,229,38+40+42。
7. 吳光丞 (1983)。 餐飲服務業─經濟成長重要牽引產業之一。食品工業,16,
8. 吳武忠 (1992b)。 現代餐旅從業人員須具備條件之探討。商業職業教育,
9. 吳武忠、 吳政和 (1982)。 中式國際觀光遊館連鎖經營之研究。交通建設,41(9),32-36。
10. 吳武忠 (1993)。 二十一世紀旅館管理新趨勢之探討。華岡商科學報,10,
11. 吳秉恩 (1994)。 企業員工績效考評─理論與實務。醫院,27(3),60-72。
12. 施志宜 (1993)。 餐飲業連鎖經營電腦化發展之研究。觀光教育,12(1),
13. 徐元直 (1997)。 成功管理者的九大條件。管理雜誌,277,92-95。
14. 陳弘元 (1991)。 全方位店經理教戰守則─店經理人員管理技巧。服務業報導,45,1-28。
15. 陳宗賢 (1999)。 連鎖經營的內部控制重點。實用稅務,293,46-51。