跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/07 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林文新
研究生(外文):Wen-Hsin Lin
論文名稱:數種常用之輸液急救液體用於靜脈注射器之輸送效率
論文名稱(外文):The hydrodynamic performance of various resuscitation fluids in intravenous catheters
指導教授:陳英洋
指導教授(外文):Ing-Youn Chen
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:63
中文關鍵詞:低血容休克輸液急救輸液器材與導管
外文關鍵詞:HypovolemiaShockFluid ResuscitationInfusion set and Catheter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1351
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
在一般的急救上,不論是創傷或是非創傷的傷害,一旦造成血液的低血容產生,如果細胞得不到充足的養分與氧氣,就會形成缺氧休克的情形,細胞的機能就會產生障礙,甚至因而受損或死亡。一旦組織中的細胞受損或是死亡,導致器官功能發生障礙甚至壞死,則人體的機能就會無法再依靠這些器官功能而生存下去。上述之問題可藉著輸液急救有效率地補充流失的體液。雖然一般坊間已有儀器可以有效率地進行輸液急救,然而這些儀器卻昂貴且笨重,並不能每一家醫療診所都能擁有,更不可能配置安裝在每一台救護車上或是輕易地帶到災區。多年來,周邊靜脈導管及中心靜脈導管常用在急救輸液之使用,但那者有較佳的效率目前還有爭論。傳統的輸液所使用的器具,又沒有人有系統的評估其績效,故對於低血容患者關係生死的輸液急救,常常無法有效率且精準地被執行。因此萌生進行此研究的動機,希望能藉著評估各種常用的輸液器材和急救溶液,在不同條件下以實驗的方式來評估其輸液急救的效率。
本實驗將使用常用的靜脈輸液管路、16Ga周邊靜脈導管及16Ga中心靜脈導管,配合各種常用於輸液急救的液體,如類晶溶液(Lactated Ringer、7.5% Hypertonic Saline)、膠質溶液(Gelofusine、Hetastarch)、Blood及水,因水的性質與急救輸液很類似,而且也能用來校正量測儀器的精確度。架設一套模擬的急救輸液系統,做各種不同液體及不同輸送壓力之下的實驗,以量測對應的體積流率和壓降,並利用 的關係式求得各個靜脈導管的輸送壓力與體積流率的關係式及各個阻力係數與體積流率的關係圖表,從量測的體積流率數據可明顯的看出周邊靜脈導管比中心靜脈導管有更佳的輸送效率,因為中心靜脈導管有細又長,其摩擦阻力相對的增加。另一方面以實驗數據求得各個元件的摩擦因子及形狀因子,在使用柏努力修正式將所預測出的數值與實際的輸送壓力做比較,其結果相當一致,此比較之mean deviation其值分別是周邊靜脈導管為8.53%及中心靜脈導管為11.30%。以阻力係數與流率的關係式來計算輸送總壓,因各種流體及Catheter都要有其對應之阻力參數,使得運算上有不便之處,而採用柏努力修正式,只要先量測出各管件的摩擦因子和形狀因子,就可以直接運用在不同的輸送液體上,此方法可提供急救時所需之輸送液流率與輸送液壓力之對應值,本實驗的方法是經由醫學輸液模式、流體力學的分析、實驗所得數據的分析,獲得簡單且可靠的公式,讓各醫療團隊在醫院、救護車上、甚至災難現場,無須貴重的儀器,即可有效率且精準地執行輸液急救。
關鍵字:低血容、休克、輸液急救、輸液器材與導管

ABSTRACT
Hypovolemic shock, both traumatic and non-traumatic, is very harmful to tissue cells. Cell damage soon occurs if the deficiency of oxygen and nutrition from hypoperfusion cannot be corrected in time, followed by organ dysfunction, and even death. Permanent sequelae are common in the one who is able to escape from death after treatment. Fluid resuscitation in time is therefore essential to reduce the morbidity and thus the mortality in patients with hypovolemic shock. Fluid therapy is one of the major improvements in current medicine. It is very important to correct the hypovolemia soon, especially when the hemorrhage has been controlled. Although there have been several machines to provide efficient fluid resuscitation with precision. They are huge, heavy and expensive. It is impossible to have such equipment in every hospital and ambulance or on the scene of disaster. Different peripheral venous and central venous catheters were utilized for fluid resuscitation for years, however, which one is better remains controversial. Scientific analysis on the hydrodynamic performance of daily used infusion devices with various fluids remains not available. This experiment module is designed with consideration of the state of art about resuscitation and the science of fluid mechanics.
This objective of this study is to measure the infusion flow rate (F) for 16Ga peripheral venous and central catheters with various fluids for resuscitation and to evaluate the hydrodynamic performance of the tested infusion sets. The resuscitation fluids, including crystalloids, colloids and red blood cells were tested in the experimental module under the conditions of gravity-driven and pressure-driven infusions. Water was also tested to verify the accuracy of the instrumentation. The test results indicate that the relationship of flow rate and infusion pressure (P) could be expressed by a mathematical model, . The resistance coefficients are correlated and tabulated for each fluid and catheter. Each fluid flowing into different catheter will have individual values of RL and RT depending on the viscosity for each fluid and the frictional characteristic for each catheter. The test results indicate that the central catheter has a poor infusion flow rate than the peripheral catheter due to its longer catheter length and smaller catheter diameter. Furthermore, the f friction factors were correlated for the plastic tubing and the central catheter; K loss factors were also obtained for the drip chamber and peripheral venous catheter. Therefore, using the modified Bernoulli equation with the empirically obtained f and K factors, the required infusion pressure at a giving flow rate can be predicted for each fluid and a particular catheter. The predictions of the modified Bernoulli equation show very good agreement with the present infusion pressure data with a mean deviation of 8.35% for peripherial catheter and 11.30% for central catheter. The utilization of the modified Bernoulli equation should be very helpful for efficient fluid resuscitation in hospital, ambulance and on the scene of disaster.
Key words: Hypovolemia, Shock, Fluid Resuscitation, Infusion set and Catheter

目 錄
中文摘要i
英文摘要ii
誌謝iii
目錄iv
表目錄vi
圖目錄viii
符號說明x
一、 緒論1
1.1 前言1
1.2 研究動機及研究目的1
1.3 文獻回顧2
二、 理論基礎分析5
2.1 能量守恆的柏努力方程式5
2.2 摩擦因子在管內造成的壓降損失7
2.3 損失係數K值10
2.4 柏努力修正式10
2.5 實驗分析11
三、 實驗系統及實驗方法13
3.1 實驗設備及儀器13
3.2 實驗系統及架構圖18
3.3 實驗步驟21
3.4 實驗方法與實驗分析22
3.4.1 利用體積流率與輸送壓力之關係式計算各導管之阻力係數RL、RT22
3.4.2 利用柏努力修正式求得各元件之摩擦因子及形狀因子22
四、 結果與討論27
4.1 各種液體的密度及黏度27
4.2 各種液體在一大氣壓下及300mmHg下之體積流率27
4.3 各種液體壓力及流率的比較28
4.4 各種液體阻力與流率的比較34
4.5 各種液體在不同導管之比較42
4.6 輸液管(Tubing)的摩擦因子50
4.7 Drip-Chamber的形狀因子K值51
4.8 周邊靜脈導管的K值52
4.9 中心靜脈導管的摩擦因子53
4.10 周邊靜脈導管與中心靜脈導管的壓降比例分佈情形54
4.11 各壓降之總合與總壓降之比較55
五、 結論57
參考文獻59
自 傳63

參考文獻
1.American College of Surgeon, Advanced Trauma Life Support, 6th Edition. 1997; American College of Surgeon, Chicago, IL, U.S.A.
2.Buchman, T.G., Menker, J.B., Lipsett, P.A., “Strategies for trauma resuscitation,” Surg Gyn Obstet, 1991; vol. 172, pp.8-12.
3.Dunham, C.M., Belzberg, H., Lyles, R., “The rapid infusion system: a superior method for the resuscitation of hypovolemic trauma patients,” Resuscitation, 1991; vol. 21, pp.20-27.
4.Chang, M.C., Meredith, J.W., “Cardiac preload, splanchnic perfusion, and their relationship during resuscitation in trauma patients,” J. Trauma, 1997; vol. 42, pp. 577.
5.Miller, P.R., Meredith, J.W., Chang, M.C., “Randomized prospective comparison of increased preload versus inotropes in the resuscitation of trauma patients: effects on cardiopulmonary function and visceral perfusion,” J. Trauma, 1998; vol. 44, pp.107-113.
6.York, J., Arrillaga, A., Graham, R., “Fluid resuscitation of patients with multiple injuries and severe closed head injury: experience with an aggressive fluid resuscitation strategy,” J. Trauma, 2000; vol. 48, pp.376-380.
7.Pollack, C.V. Jr, “Prehospital fluid resuscitation of the trauma patient. An update on the controversies,” Emerg Med Clinics North Am. 1993; vol. 11, pp.61-70.
8.Nolan, J., “Fluid replacement,” Br Med Bulletin, 1999; vol. 55, pp.821-843.
9.Beards, S.C., Watt, T, Edwards, J.D., “Comparison of the hemodynamic and oxygen transport responses to modified fluid gelatin and hetastarch in critically ill patients: a prospective, randomized trial,” Crit. Care Med. 1994; vol. 22, pp.600-605.
10.Myers, C., “Fluid resuscitation.” European J Emerg Med, 1997; vol. 4, pp.224-232.
11.Schierhout, G., Roberts, I., “Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomized trials,” BMJ, 1998; vol. 316, pp.961-964.
12.Roberts, J.S., Bratton, S.L., “Colloid volume expanders. Problems, pitfalls and possibilities,’’ Drugs, 1998; vol. 55, pp.621-630.
13.Imm, A., Carlson, R.W., “Fluid resuscitation in circulatory shock.” Crit Care Clin, 1993; vol. 9, pp.313-333.
14.Pollack, C.V. Jr., “Prehospital fluid resuscitation of the trauma patient. Emerg Clin North Am,” 1993; vol. 11, pp.61-70.
15.Abraham, E., Shapiro, M., Podolsky, S. “Central venous catheterization in the emergency setting” Crit Care Med, 1983; vol. 11, pp.515-7.
16.Sadler, R., Eisner, M.E., Waxman, K., “Comparative flow rates of intravenous catheters,” Military Med, 1984; vol. 149, pp.415-416.
17.Iserson, K.V., Reeter, A.K., Criss, E., “Comparison of flow rates for standard and large-bore blood tubing,” West J Med, 1985; vol. 143, pp.183-185.
18.Mateer, J.R., Thompson, B.M., Aprahamian, C., “Rapid fluid resuscitation with central venous cateters,” Ann Emerg Med, 1983; vol. 12, pp.149-152.
19.Aeder, M.I., Crowe, J.P., Rhodes, R.S., “Technical limitations in the rapid infusion of intravenous fluids,” Ann Emerg Med 1985; vol. 14, pp.307-310.
20.Pulliam, C.W., Reines, H.D., “Subclavian vein catherization,” Am J. Surg. 1985; vol. 149, pp.416-418.
21.Dula, D.J., Muller, H.A., Donovan, J.W., “Flow rate variance of commonly used IV infusion techniques,” J. Trauma, 1981; vol. 21, pp.480-482.
22.Millikan, J.S., Cain, T.L., Hansbrough, J., “Rapid volume replacement for hypovolemic shock: a comparison of techniques and equipment,” J Trauma. 1984; vol. 24, pp.428-431.
23.Philip, J.H., Philip, B.K., “Pressurized infusion system for fluid resuscitation. Anesthesia & Analgesia,” 1984; vol. 63, pp.779-781.
24.Elad, D., Zaretsky, U., Heller, O., “Hydrodynamic evaluation of intravenous infusion systems,” Ann Emerg Med, 1993; vol. 23, pp.457-463.
25.Scott, D.A., Fox, J.A., Cnaan, A., “Resistance to fluid flow in veins,” J. Clin. Monitoring, 1996; vol. 12, pp.331-337.
26.Franklin, W.E., Patterson, J., Kulick, M., “A new method for rapid fluid bolus infusion into a peripheral vein,” Prehosp. Emerg. Care., 1997; vol. 1, pp.273-276.
27.Philip, B.K., Philip, J.H., “Characterization of flow in intravenous infusion systems,” IEEE Biomed. Engineering, 1983; vol. 30, pp.702-707.
28.Philip, B.K., Philip, J.H., “Characterization of flow in intravenous catheters. IEEE Biomed. Engineering,” 1986; vol. 33, pp.529-53l.
29.Philip, B.K., Philip, J.H., “Pressure-flow relationships in intravenous infusion systems,” Anaesthesia, 1987; vol. 42, pp.775-776.
30.Philip, J.H., Philip, B.K., “Simplified approach to assessing intravenous flow characteristics in the therapeutic infusion range,” IEEE Biomed. Engineering, 1988; vol. 35, pp.1093-1094.
31.Philip, B.K., Philip, J.H., “Prediction of flow capability in intravenous infusion systems: implications for fluid resuscitation,” J. Clin. Monitoring, 1990; vol. 6, pp.113-117.
32.Munson, B.R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, John Wiley & Sons, Inc. New York, 1994.
33.Janna, William S., Design of Fluid Thermal Systems, PWS-KENT, Boston, 1993.
34.李敏達,物理化學實驗,三民書局股份有限公司,台北,1990。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 李麗君(民85b)。從系統教學設計之觀點談成人隔空教材之發展。教學科技與媒體,26,22-28。
2. 謝明瑞(2000)。遠距教育理論之探討,隔空教育論叢,臺北:國立空中大學研究處,第十二輯,47-68。
3. 楊國德(民85)。終生學習與高等教育改革。載於教育部委託中華民國成人教育學會主編,終生學習與教育改革。 臺北:師大書苑,頁345-362。
4. 黃富順(民76)。從終身教育觀點看空中大學課程發展趨勢,社教雙月刊,24-27;22,22-25。
5. 黃政傑(民85)。重建空大學科課程發展模式,隔空教育論叢,臺北:國立空中大學研究處,第八輯,17-38。
6. 黃政傑(民84)。空中大學課程設計的展望,隔空教育論叢,臺北:國立空中大學研究處,第七輯,1-34。
7. 黃政傑(民80)。隔空教育的教學媒體與課程設計問題─兼談空大的問題,隔空教育論叢,臺北:國立空中大學研究處,第三輯,75-79。
8. 黃明月(民82)。從電子傳播科技的發展看隔空教育的趨勢,成人教育,16期,頁51-54。
9. 張偉遠(2000)。從遠程教育中導修教師的作用和任務的探討-從遠程學習者的學習體驗談起,隔空教育論叢,臺北:國立空中大學研究處,第十二輯,161-169。
10. 洪雯柔(民88)。中日大學成人教育之比較,比較教育,47期,頁78-92。
11. 魏惠娟(民86a)。成人教育方案發展的系統分析與應用。成人教育學刊,1,253-287。
12. 魏惠娟(民87a)。成人教育方案發展的理論、實際與反思。成人教育學刊,2,185-217。
13. 黃富順(民81)台灣地區成人教育的現況與發展趨勢 成人教育第七期
14. 黃富順(民85)終身學習的意義、源起、發展與實施 載於中華民國成人教育學會 主編:終身學習與教育改革(1-32頁) 台北市:師大書苑