(3.239.33.139) 您好!臺灣時間:2021/03/07 23:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊永為
研究生(外文):Yung-wei Yang
論文名稱:空氣和水在小管徑U型管內摩擦壓降之分析
論文名稱(外文):Air-Water Two-phase Flow Patterns and Frictional Pressure Drop in 180° Return Bend
指導教授:陳 英 洋
指導教授(外文):Ing Youn Chen
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:93
中文關鍵詞:兩相流彎管U型管壓降摩擦因子流譜
外文關鍵詞:Twi phase flowReturn BendU TubePressure DropFriction FactorFlow Pattern
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
所有的蒸發器及冷凝器螺旋管皆包含彎管或其他組成熱交換器管件的裝置。流體通過彎管時產生擾流,並且也會引起遠大於直管的摩擦壓降。因此,彎管的壓力損失對於冷藏器及其他兩相系統之整體效應而言,是非常重要的。因此空調機熱交換器設計除了具備熱傳遞知識外更需要知道如何計算壓力損失以提供夠用的壓縮機動力。在典型空調機熱交換器常使用U型管。因此,單相流和兩相流在180°彎管內的摩擦性能對於正確的評估空調的熱交換器的效率式非常重要的,目前兩相流壓降的研究大都用在直管,然而關於180°彎管的兩相流研究含數據模式卻非常有限。
本研究之目的乃是以實驗方式在室溫中以空氣和水的單相流乃兩相流流過180°的彎管。本研究共測試了9支180°玻璃彎管,內徑( D )是3.0, 4.9及6.9 mm,曲徑比( 2R/D )為3, 5及7, 其中R為彎管中心線之半徑,此實驗乃是在不同的質通量和乾度下進行,並分別量測對應的體積流率和壓降。水及空氣的單相測試之雷諾數的範圍約400< ReD <10000。兩相測試的混合質通量的範圍為50~1000 kg/m2s.本實驗也以視覺觀察及高速相機擷取個個流動的條件的流譜圖並以D=3, 4.95及6.9mm的數據分別組成三個流譜圖,論文中只列出D=7。此外也紀錄各流譜線之間的轉型數據以在流譜圖上劃出兩個流譜間的轉型線。
在180°彎管中觀察到的流譜數據絕大部分與相同管徑的直管相似,但當波型層流轉變成環狀流時外在。曲徑比較小(2R/D= 3 )時,觀察到流譜短暫地由層流轉成環狀流。並觀察到液體藉由離心力移至管壁外側,在外測液體隨即被移動至管壁上側然後再轉回管壁內側,此現象可能是彎管的二次流所引起。然而此現象並未在較高的氣體乾度流時被發現此原因可能是氣相的慣性力克服二次流的旋轉力,所以在外側的液體未能被捲到管壁的上側及內側。一般而言,通過水平彎管的摩擦壓降包含摩擦力、曲率,以及彎管下游出口處之直管部分之壓力的恢復所產生的效應。
本實驗的兩相流彎管壓降數據已包含彎管下游直管回覆流所引起的額外壓降損,此量測到的彎管壓降會隨著質通量及蒸氣乾度的增加以及曲率半徑與管徑的減少而增加。

All evaporator and condenser coils contain bends or other fittings to compact the heat exchanger size. The design of air-cooled heat exchangers requires the knowledge of heat transfer and frictional loss. For typical air-cooled coils, use of hairpin is very common. As expected, the hairpin that contains many 180° return bends (U bend) will cause higher pressure drop than the corresponding straight tube. As a consequence, the single-phase and two-phase frictional performance of a return bend is very important for accurate estimation of the performance of an air-cooled heat exchanger. While there are a large number of investigations focusing on two-phase pressure drop in a straight tube. However, very limited data, models and correlations are currently available for two-phase flow in 180° return bends.
The objective of this study is to conduct experimental investigations of two-phase flow air-water mixture and single-phase flows of air and water flowing in 180° horizontal return bends at room temperature. A total of nine 180° return bends has been tested for the present study. The test tubes are made of glass tube having inner diameters (D) of 3.0, 4.95, and 6.9 mm with dimensionless tube curvature ratio (2R/D) of 3, 5 and 7, where R is the radius of centerline of bend. Test range of Reynolds numbers for water and air single-phase tests is about 400< ReD <10000. The range of mss flux for two-phase mixture is between 50 ~ 400 kg/m2s.
Two-phase flow patterns were taken by a combination of visual observations and high-speed camera photos to form the flow regime maps for each test tube. The data for the transition between flow patterns were recorded. Most of the observed flow pattern data in 180° return bends are similar to that in straight tubes with the same tube diameter, except for the transition data from wavy stratified to annular. For smaller curvature ratio of 3, one can see the flow pattern recovery region is temporally turned from stratified flow into annular flow. The liquid was observed to switch to the outer tube wall by centrifugal force, the liquid at out wall was soon forced to move toward to the upper side of tube wall and then switch back to the inside of the tube wall by secondary flow. However, this phenomenon is not observed at higher vapor quality due to the lack of liquid and increase of gas-phase inertia.
Two-Phase frictional pressure drop data for 180° return bend including the additional loss in the downstream straight tube were obtained. In general, the frictional pressure drop across a horizontal return bend includes the effects of friction, curvature and pressure recovery at bend exit to the downstream straight tube. The effects of total mass flux, vapor quality, curvature ratio and tube diameter were examined. The resulted two-phase pressure drops were observed to algebraically increase with increasing total mass flux and vapor quality, and decreasing bend radius and tube diameter.

目錄
中文摘要i
英文摘要iii
誌 謝v
目錄vi
表目錄viii
圖目錄ix
符號說明( Nomenclature )xi
第一章 緒 論1
1.2 研究目的4
第二章 文獻回顧5
2.1 直管兩相流摩擦壓降6
2.1.1 基礎理論模式6
2.1.2 經驗式 (Empirical Corrleations)6
2.2彎管兩相流摩擦壓降(Total Bend-Loss Coefficient)9
2.3在彎管的摩擦因子(Friction Factors in Coiled Tubes):16
2.4 流譜23
2.4.1 流譜型態種類23
2.4.2流譜預測方法26
第三章 實驗系統與分析方法29
3.1 簡 介29
3.2.1 測試段29
3.2.2 照相段30
3.2.3 水循環系統30
3.2.4 空氣循環系統31
3.3 實驗儀器31
3.3.1 溫度量測32
3.3.2 壓力量測32
3.3.3 差壓量測32
3.3.4 水流量量測33
3.3.5 空氣流量量測33
3.3.6 顯微照相機33
3.3.7 照明設備34
3.3.8 資料擷取系統34
3.4 工作流體的熱力物理性質34
3.5 實驗過程35
3.5.1 系統測漏35
3.5.2 實驗操作步驟35
3.6 實驗觀察37
3.6.1 流譜型態分析37
3.6.2 水-空氣流譜實驗數據換算37
第四章 結果與討論39
4.1 摩擦因子:39
4.2 彎管兩相摩擦壓力降41
4.3流譜的比較42
第五章 結論45
參考文獻46
附錄 一 基本量與導出量之不準度77
附錄二 空氣、水進口壓力與溫度關係換算表78
自傳79

1.Alves, G.E., 1954, “Co-current liquid-gas flow in a pipeline contactor”, Chem. Process. Engng, Vol. 50, No. 4, pp. 449-456.
2.Akagawa, K., Sakaguchi, T. and Ueda, M., 1971, “ On a Gas-liquid Two Phase Flow in Helical coiled Coiled Tubes “, Trans. JSME, Vol. 14. 72, pp.564-571.
3.Abou-arba, T.W., Aldoss, T. K. and Mansour, A., 1991, “Pressure Drop in Alternating Curved Tubes”, Applied Scientific Research, Vol. 48, pp.1-9. Abou-arba, T.W., Aldoss, T. K. and Mansour, A., 1991, “Pressure Drop in Alternating Curved Tubes”, Applied Scientific Research, Vol. 48, pp.1-9.
4.Awwad1, A., Xin, R. C., Dong, Z. F., Ebadian, M. A., and Soliman, H. M., 1995, “Flow Patterns and Pressure Drop in Air/Water Two-Phase Flow in Horizontal Helicoidal Pipes”, J. OF fluid Engineering, Vol.117, pp.720-726.
5.Awwad2, A., Xin, R. C., Dong, Z. F., Ebadian, M. A., and Soliman, H. M., 1995 ,“ Measurement and correlation of the Pressure Drop in Air-Water Two-Phase Flow in Horizontal Helicoidal Pipes”, Int. J. Multiphase Flow, Vol.21, No. 4, pp.607-619.
6.Banerjee, S., Rhodes, E. and Scott, D. S., 1969, “Studies on Cocurrent Gas Liquid Flow in Helically Coiled Tubes, I. Flow Pattern, Pressure Drop and Hold-up”, Can. J. Chem. Eng., Vol. 47, pp. 445-453.
7.Barnea, D., Luninski, Y. and Taitel, Y., 1983,“Flow pattern in horizontal and vertical two phase flow in small diameter pipes”, Can. J. Chem. Eng., Vol.61, pp. 617-620.
8.Chisholm, D., 1967, ”Pressure Losses in Bends and Tees during Steam-Water Flow”, Engineering Boiler House Rev. Vol. 82, pp. 235-237.
9.Chisholm, D., 1967,”A Theoretical Basis for The Lockhart-Martinelli Correlation for Two-Phase Flow ,” Int. J. of Heat and Mass Transfer ,Vol.10,pp. 1767-1778.
10.Chisholm, D., 1973, ”Pressure Gradient Due to Friction during the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Chanels”, Int. J. Heat Mass Transfer, Vol. 16, pp. 347-348.
11.Chisholm, D., 1980, ”Two-Phase Flow in Bends”, Int. J. Multiphase Flow, Vol. 6, pp. 361-367
12.Chisholm, D., 1983, ”Two-Phase Flow in Pipelines and Heat Exchangers”, George Godwin, London and New York.
13.Chen X.J. and Znang, M.Y., 1984, “An Investigation on Flow pattern Transition for Gas-liquid Two-Phase Flow in Helical Coils”, Multiphase Flow and heat Transfer III. Part A: Fundarmentals edited by T. N. Veziroglu and A. E. Bergles, Elsevier Science Publishers B. V., Amsterdam, pp.185-200.
14.Cheng, K.C. and Yuen, F. P., 1987, “Flow Visualization Studies on Secondary Flow in Straight Tubes Downstream of a 180 deg bend and in Isothermally Heat horizontal tubes”, J. of Heat Transfer, Vol. 109, pp. 49-54.
15.Cheng, K.C. and Yuen, F. P., 1987, “Flow Visualization Experiments on Secondary Flow Patterns in an Isothermally Heat Curved pipe”, J. of Heat Transfer, Vol. 109, pp. 55-61.
16.Chen, I. Y., 1998, “Two-Phase Pressure Drop Inside Helical Coils at High Gravity Conditions”, Report to Sundstrand Corp.
17.Coleman, J.W. and Garimella, S., 1999, “Characterization of Two-Phase Flow Pattern in Small Diameter Round and Rectangular tubes”, Int. J. of Heat and Mass Transfer, Vol. 42, pp. 2869-2881. Coleman, J.W. and Garimella, S., 1999, “Characterization of Two-Phase Flow Pattern in Small Diameter Round and Rectangular tubes”, Int. J. of Heat and Mass Transfer, Vol. 42, pp. 2869-2881.
18.Chen, I. Y., Yang, K. S., Chang, Y. J. and Wang, C.C., 2000, “Two-Phase Pressure Drop of Air-Water and R-410A in Small Horizontal Tubes”, Int. J. of Multiphase Flow, June.(accepted)(NSC89-2212-E-224-007).
19.Chen, I. Y., Yang, Y.W., Wang, C.C., et al., 2001, “Frictional Performance of Small Diameter return Bend”, 【Abstract】.
20.Cho, K. and Tae, S.J., 2001, “Condensation heat transfer for R-22 and R- 407C refrigerant-Oil mixtures in a microfin tube with a U-bend”, Int. J. of heat and Mass Transfer, Vol. 44, pp. 2043-2051.
21.David F. Geary, 1975, “Return Bend Pressure Drop in Refrigeration Systems”, ASHRAE, Vol. 81, No. 1, pp. 250-265.
22.Damianides, C.A. and Westwater, J.W.,“Two-phase flow patterns in a compact heat exchanger and in small tubes”
23.Ito, H., 1959, “Frictions Factors for Turbulent Flow in Curved Pipes”, J. of Basic Engineering, Transaction of the ASME, Vol. 82, pp. 123-134.
24.Ito, H., 1960, “Pressure Losses in Smooth Pipe Bends”, J. of Basic Engineering, Transaction of the ASME, pp. 131-143.
25.Ito, H., 1987, “Flow in Curved Pipes,” JAME Int. J., Vol. 30, No. 262, pp. 543-552.
26.Kim, J.S., Nagata, K., Katsuta, M., et al., 1989, “Influence of Oil on Refrigerant Evaporator Performance- 4th Report : Flow Regime and Pressure Drop in Return Bend”, Trans. of the JAR, Vol. 6, No. 1, pp.79-89.
27.Lockhart, R. W. and Martinelli, R. C., 1949, “Proposed Correlation of Data for Isothermal Two-Phase Two —Component Flow in Pipes,” Chemical Eng. Progress Vol. 45, pp. 39-48.
28.Mishra, P. and Gupta, S. N., 1978, “Momentum Transfer in Curved Pipes. 1. Newtonian Fluids ” , Ind. Eng. Chem. Process Des. Dev., Vol. 18, No. 1, pp.130-137. Mishra, P. and Gupta, S. N., 1978, “Momentum Transfer in Curved Pipes. 1. Newtonian Fluids ” , Ind. Eng. Chem. Process Des. Dev., Vol. 18, No. 1, pp.130-137.
29.Manlapaz, R. L. and Churchill, S. W., 1980, “Fully Developed Laminar Flow in a Helical Coiled Tube of Finite Pitch”, Chem. Eng. Communication, Vol. 7, pp. 57-58.
30.Miller, K. M., Ungar, E. K., Dzenitis, J. M. and Wheeler, M., 1993, “Microgravity Two-Phase Pressure Drop Data in Smooth Tubing,” Proceeding of Symposium on Fluid Mechanics Phenomena in Microgravity, ASME Winter Annular Meeting, AMD-Vol.174/FED-Vol.175, pp. 37-50.
31.Mukhtar, A., Singh, S. N. and Seshadri, V., 1995, “Pressure Drop in a Long 90° Horizontal Bend For The Flow Of Multisized Heterogeneous Slurries”, Int. J. Multiphase, Vol. 21, No. 2, pp. 329-334.
32.Popiel, C. O., Van der Merwe, D. F., 1996, ” Friction Factor in Sin-Pipe Flow ”, ASME J. of Fluids Engineering, Vol. 118, pp.341-345.
33.Rangacharyulu, K. and Davies, G.S., 1984, “Pressure Drop and Holdup Studies of Air-Liquid Flow in Helical Coils”, The Chemical Engineering Journal, Vol. 29, pp. 41-46.
34.Sanjoy, B., Rhodes, E. and Donald, S., 1969, “Studies on Cocurrent Gas-Liquid Flow in Helically Coiled Tubes”, Canadian J. of Chem. Eng., Vol.47, pp. 445-453.
35.Schmidt, E.F., 1967, “ Heat Transfer and Pressure Loss in Spiral Tubes”, Chem. Eng. Tech., Vol. 39, pp. 781-789.
36.Saxena, A. K., Schumpe, A., Nigam, K. D. P. and Deckwer, W.D., 1990, “Flow Regimes, Hold-up and Pressure Drop for Two Phase Flow in Helical Coils”, The Canadian J. of Chemical Eng., Vol. 68, pp. 553-559.
37.Traviss, D. P., and Rohsenow, W. M., 1973, “ The Influence of Return Bends on the Downstream Pressure Drop and Condensation Heat Transfer in Tubes” , ASHRAE Seminannual Meeting, Chicago, II, No.2269 RP-63, pp. 129-137.
38.Taitel, Y. and Jerusalem., 1990, “Flow Pattern Transition in Two-Phase Flow”, Paper Presented at 9th Int. Heat Transfer Conference, pp. 237-254.
39.Tran, G.C., Gupta, S., Chato, J.C. and Newell, T.A., 2000, “An Experimental Study of Return Bend Effects on Pressure Drop and Void Fraction”, Eighth International Refrigeration Conference at Purdue University, pp. 25-28.
40.Wambsganss, M. W., Jendrzejczyk, J. A., and France ,D. M., 1991, ”Two-Phase Flow Pattern and Transition in a Small,Horizontal Rectangular Channel” Int. J. Multiphase Flow, Vol. 17, No. 3, pp. 327-324.
41.Wang, C.C., Chiang, S.K., Chang, Y.J. and Chung, T.W., 2000, “Two Phase Flow Resistance of Refrigerants R-22, R-410A, And R-407C in small Diameter”, Chemical Eng. Research Design, vol. 17, pp. 1-30.
42.Wojtkowiaka J. and Popiel, C. O., 2000a, “Effect of Cooling on Pressure in U-Type Wavy pipe Flow,” Int. Comm. Heat Mass Transfer, Vol. 27, No.2, pp. 169-177.
43.Wojtkowiakb, J. and Popiel, C. O., 2000b, “ Friction Factor in U-Type Undulated Pipe Flow”, Transactions of the ASME, Vol. 122, pp. 260-263.
44.Xin, R. C., Awwad, A., Dong, Z. F. and Ebadian, M.A., 1996, “Heat Transfer of Air/Water two Phase flow in Helicoidal Pipes”, Transactions of The ASME, Vol. 118, pp. 442-448.
45.Yao, L. S., 1984, “Heat Convection in a Horizontal Curved Pipe”, J. of Heat Transfer, Vol. 106, pp. 71-77. Yao, L. S., 1984, “Heat Convection in a Horizontal Curved Pipe”, J. of Heat Transfer, Vol. 106, pp. 71-77.
46.Galvin C. Tran, Sangeet Gupta, John C. et al., 2000, “An Experimental Study of Return Bend Effects on Pressure Drop and Void Fraction”, Eighth International Refrigeration Conference at Purdue University, pp. 25-28.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 周法高:〈家訓作品的源流(上)〉。《大陸雜誌》第二十二卷第二期,1950,頁1-5。
2. 嚴耕望:〈唐代文化約論〉。《大陸雜誌》第四卷第八期,1952,頁243-251。
3. 朱鳳玉:〈太公家教研究〉。《漢學研究》第四卷第二期,1986,頁389-409。
4. 王晴佳:〈如何看待後現代主義對史學的挑戰?〉,《新史學》第十卷第二期,1999,頁107-143。
5. 吳清山(民88)。推行「國民教育階段九年一貫課程」學校行政配合之探究。教育研究資訊,第7卷,第1期,頁14-21。
6. 李錫津(民89)。學校的課程管理。教師天地,第108期,頁4-7。
7. 劉靜貞:〈歷史的重讀與再現─古代經典「列女傳」的通識意涵〉。《通識教育》第四卷第三期,1997,頁111-126。
8. 傅樂成:〈唐人的生活〉。《食貨月刊》第四卷第一期,1974,頁1-12。
9. 周愚文:〈敦煌寫本《太公家教》初探─校刊與分析〉。《教育研究集刊》第三十八輯,1997,頁128-181。
10. 周法高:〈家訓作品的源流(下)〉。《大陸雜誌》第二十二卷第四期,1950,頁111-116。
11. 周法高:〈家訓作品的源流(中)〉。《大陸雜誌》第二十二卷第三期,1950,頁88-94。
12. 林明地(民87)。國民中學校長對家長參與之態度研究。國立中正大學學報,第9卷,第1期,頁93-136。
13. 孫本初(民84)。學習型組織的內涵與運用。空大行政學報,第三期,頁1-17。
14. 高義展(民89)。淺談學校行政與教師專業自主的調適。教育資料與研究,第32期,頁50-55。
15. 陳木金(民89)。從學校行政系統理論觀點看九年一貫新課程的實施。學校行政,第7期,頁17-31。
 
系統版面圖檔 系統版面圖檔