1.K. Hedengren, Methodology for Automatic Image-Based Inspection of Industrial Objects, in Advanced in Machine Vision(J. Sanz, Ed., ), pp. 160-191, Springer-Verlag, New York, 1989.
2.J. Kirsch, and K. Kirsch, Inspection Robot: Applications in Industry, in Concise International Encyclopedia of Robotics(R. C. Dorf, Ed., ), pp. 417-422, John Wily and Sons, New York, 1990.
3.T. S. Newman, and A. K. Jain, “A Survey of Automated Visual Inspection,” Computer Vision and Image Understanding, Vol. 61, No. 2, pp. 231-262, 1995.
4.H. Freeman, Machine Vision for Inspection and Measurement, Academic Press, New York, 1989,
5.A. K. Elshennawy, “The Role of Inspection in Automated Manufacturing,” Computers and Industrial Engineering, 17, pp. 327-332, 1989.
6.L. V. Gool, P. Wambacq, and A. Oosterlinck, Intelligent Robotic Visions Systems, in Intelligent Robotic Systems (S. G. Tzafestas, Ed.,), pp. 457-507, Deeker, New York, 1991.
7.C. W. Kennedy, E. G. Hoffman, and S. D. Bond, Inspection and Gagging, sixth ed., Industrial Press, New York, 1987.
8.G. H. Tarbox, and L. Gerhardt, Design and Implementation of A Hierarchical Automated Inspection System, Proceedings of the SPIE Automated Inspection and High-Speed Vision Architectures III Conference, Philadelphia, pp. 13-24, 1989.
9.W. E. Eureka, and R. Nancy, Quality Up, Costs Down: A Manager''s Guide to Taguchi Methods and QFD, Dearborn, Mich.: ASI Press; Burr Ridge, Ill. :Irwin Professional Pub, 1995.
10.J. P. Chan, and G. S. Palmer, “Machine Vision Application in Industry,” IEEE Colloquium on Application of Machine Vision, pp.1-6, 1995.
11.D. C. Montgomery, Introduction to Statistical Quality Control, 3rd ed., John Wiley and Sons, New York, 1996.
12.M. Moganti, and F. Ercal, “Automatic PCB Inspection Systems,” IEEE Potentials, Vol. 14, No. 3, pp. 6-10, 1995.
13.D. W. Roymand, and D. F. Haigh, “Why Automate Optical Inspection?” Proceedings of the Test Conference, pp. 1033, 1997.
14.H. H. Poole, Fundamentals of Robotics Engineering, Van Nostrand Reinhold, New York, 1989.
15.S. B. Morriss, Automated Manufacturing System:Actuators, Controls, Sensors and Robotics, McGraw-Hill, New York, 1995.
16.I. Silven, Westman, S. Huitari, and H. Hakalahti, A Defect Analysis Method for Visual Inspection, Proceedings of the Eighth International Conference on Pattern Recognition, Paris, pp. 868-870, 1986.
17.J. Chan, and D. Braggins, “ Untiring Eyes,” Manufacturing Engineer, Vol. 75, No.5, pp. 233 —235, 1996.
18.T. S. Newman, and A. K. Jain, “A Survey of Automated Visual Inspection,” Computer Vision and Image Understanding, Vol. 61, No. 2, pp. 231-262, 1995.
19.C. C. Bowman, “Automated Visual Inspection,” in Sharpe. R. S. (ed.,). Non-destructive Testing, Vol. 8, 1990.
20.S. L. Spitz, “AOI Sees Better, User Say”, Electron Package Production, pp. 48-53, 1987.
21.C. P. C. Benhabib, K. C. Smith, and A. M. Yip, “Automatic Visual Inspection of Printed Circuit Boards: An Experiment System,” International Journal of Robot Automation, Vol. 5, 1990.
22.S. T. Jones, “ATE Finds a Partner: Inspection System for PCB Production,” Electronics, pp.51-55, 1985.
23.M. Mogant, F. Ercal, C. H. Dagli, and S. Tsunekawa, “Automatic PCB Inspection Algorithms: a Survey,” Computer Vision and Image Understanding, Vol. 63, No. 2, pp. 287-313, 1996.
24.H. H. Loh and M. S. Lu, “Printed Circuit Board Inspection Using Image Analysis,” IEEE Transactions on Industrial Application, Vol. 35, No. 2, pp. 426-432, 1999.
25.江行全、陳佩玲、王建智, ”邏輯迴歸樹應用於PCB金手指之瑕疵分類”, 中國工業工程學會八十八年度年會暨第七屆國科會工業工程學門專題研究計畫成果研討會, 新竹,清華大學,1999.
26.B. C. Jiang, Y. M. Wang, and C. C. Wang, “Bootstrap Sampling Techniques Applied to PCB Golden Fingers Defects Classification,” Accepted by the International Journal of Production Research, 2001.
27.R. Harnarine, and M. Mahanir, “A Databases System for Parts Verification and Defect Reporting on Assembly Line,” Proceedings of the International Manufacturing, Design, Reliability, and Education of Manufacturability, Atlanta, pp. 75-81, 1990.
28.N. Zuech, Applying Machine Vision, John Wiley and Sons, New York, 1988.
29.P. B. Chou, A. R. Rao, M. C. Stureenbecker, F. Y. Wu, and V. H. Brecher, “Automatic Defect Classification for Semiconductor Manufacturing,” Machine Vision and Applications, Vol. 9, No. 4, pp.201-214, 1997.
30.S. D. Eppinger, C. D. Huber, and V. H. Pham, “A Methodology for Manufacturing Process Signature Analysis,” Journal of Manufacturing Systems, Vol.14, No.1, pp.20-34, 1995.
31.S. B. Morriss, Automated Manufacturing System:Actuators, Controls, Sensors and Robotics, McGraw-Hill, New York, 1995.
32.M. P. Groover, Automation Production Systems and Computer Integrated Manufacturing, Prentice-Hall, New York, 1987.
33.江行全,自動視覺檢測技術教材, 元智大學, 1997.
34.W. Xlan, Y. Zhang, Z. Tu, and E. L. Hall, “Automatic Visual Inspection of the Surface Appearance Defects of Bearing Roller, ” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 3, pp. 1490-1494, 1990.
35.B, C. Jiang and S. J. Jiang, “Machine Vision Based Inspection of Oil Seals,” Journal of Manufacturing Systems, Vol.17, No. 3, pp. 159-166,1998.
36.K. W. Chapman, Johnson, C. and Mclean, T. J, ”A High Speed Statistical Process Control Application of Machine Vision to Electronics Manufacturing,” Integrated Industrial Engineering, Vol.19, No.1-4, pp.234-238, 1990.
37.王鵬凱、蔡篤銘, “應用機器視覺於導線架製程之品質自動監測, ”中國工業工程學刊, 第十六卷第四期, pp. 533-550, 1999.38.陳飛龍、唐為璽, “結合影像處理與類類經網路之沖壓件檢測技術, ”中國工業工程學刊, 第十六卷第二期, pp. 253-264, 1999.39.彭德保,蔡孟儒 “應用機器視覺於透明容器內異物之自動化檢測, ”中國工業工程學刊, 第十四卷第一期, pp61-70, 1997.40.R, M. Conners, C, W. Mcmillin, K, Lin, and R. E. V. Espinosa, “Identifying and Locating Surface Defects in Wood: Parts of An Automated Lumber Processing System,” IEEE Transactions Pattern Analysis Machine Intelligence, Vol. 5, No. 2, pp.573-583, 1983.
41.P. Ceilo, Optical Techniques for Industrial Inspection, Academic Press, New York, 1987.
42.陳永增, 鄧惠源, 非破壞檢測, 全華科技, 台北, 1999.
43.D. E. Bray, and R. K. Stanley, Nondestructive Evaluation: A Tool in Design, Manufacturing and Service, McGraw-Hill, New York, 1993.
44.S. Hata, K. Hagimae, S. Hibi, and T. Gunji, “Assembled PCB Visual Inspection Machine Using Image Processor with DSP,” Proceedings of the 15th Annual Conference of IEEE Industrial Electronics Society, pp. 572-577, Vol. 3, 1989.
45.B. C. Jiang, S. L. Tasi, and C. C. Wang, “Machine-Vision Based Grey Relational Theory Applied to IC Marking Inspection,” (submitted for publication 2001).
46.K. W. Ko, and H. S. Cho, “Solder Joints Inspection Using A Neural Network and Fuzzy Rule-Based Classification Method,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 23, No. 2, pp.93 —103, 1998.
47.J. Heikkinen, H. Klapuri, and J. Saarinen, “Fuzzy Classifier in Detect Diagnosis of Solder Joints,” Proceedings of the Fifth IEEE International Conference, Vol. 1, pp. 113-117, 1996.
48.W. E. Mcintosh, “Automating the Inspection of Printed Circuit Boards,” Robotics Today, pp. 75—78, 1983.
49.J. S. Park, and J. T. Tou, ”A Solder Joint Inspection System for Automated Printed Circuit Board Manufacturing,” Proceedings of IEEE the International Conference Robotics and Automation, Vol. 2, pp. 1290—1295, 1990.
50.林柏聰, “以資訊理論為基之PCB金屬表面自動瑕疵檢測”, 元智大學工業工程所碩士論文, 台灣, 2000.
51.R. C. Gonzalez, and R. E. Wood, Digital Image Processing, Addison-Wesley, New York, 1992.
52.M. Friedman, and K. Abraham, Introduction to Pattern Recognition Statistical, Structural, Neural and Fuzzy Logic Approaches, World Scientific, London, 1999.
53.M. C. Wu, and S. R. Jen, “Global Shape Information Modeling and Classification of 2D Workpieces,” International Journal of Computer Integrated Manufacturing, Vol. 7, No. 5, pp. 261-275, 1994.
54.M. K. Hu, “Visual Pattern Recognition by Moment Invariants,” IEEE Transactions of Information Theory, Vol. 8, pp. 179-187, 1962.
55.P. Reeves, and R. W. Taylor, “Identification of Three-Dimensional Objects Using Range Information,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 4, pp. 403-410, 1989.
56.M. R. Rezaee, B. Goedhart, B. P. F. Lelieveldt, and J. H. C. Reiber, “Fuzzy Feature Selection,” Pattern Recognition, Vol. 32, No. 12, pp. 2011-2019, 1999.
57.B. D. Ripley, Pattern Recognition and Neural Networks, Cambridge University Press, New York, 1996.
58.P. A. Devijver, and J. Kittler, Pattern Recognition: A Statistical Approach, Prentice-Hall, Englewood Cliffs, NJ, 1982.
59.繆邵綱, 數位影像處理 — 活用Matlab , 全華科技, 台灣, 1999.
60.M. Dash, and H. Liu, “Feature Selection for Classification,” Intelligent Data Analysis, Vol. 1, No. 3, 1997.
61.W. Siedlecki and J. Sklansky, “On Automatic Feature Selection,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 2, No. 2, pp. 197-200, 1988.
62.K. Fukunaga, and R. D. Short, “A Class of Feature Extraction Criteria and Its Relation to The Bayes Risk Estimate,” IEEE Transactions on Information Theory, IT-26, pp. 59-65, 1980.
63.W. Siedlecki and J. Sklansky, “A Note on Genetic Algorithm for Large-Scale Feature Selection,” Pattern Recognition Letters, Vol. 10, No. 4, pp. 335-347, 1989.
64.B. Sahiner, H. Chan, D. Wei, N. Petrick, M. A. Helvie, D. D. Alder, and M. M. Goodsitt, “Image Feature Selection by a Genetic Algorithm: Application to Classification of Mass and Normal Breast,” Medical Physics, Vol. 23, No. 10, pp. 1671-1684, 1996
65.L. L. Priddy, S. K. Rogers, D. W. Ruck, G. T. Tarr, and M. Kabrisky, “Bayesian Selection of Important Features for Feedforward Neural Network,” Neurocomputing, Vol. 5, No. 1, pp. 91-103, 1993.
66.R. Setionon, H, Liu, “Neural Network Feature Selection,” IEEE Transactions on Neural Network, Vol. 8, No. 1, pp. 654-662, 1997.
67.R. Schalkoff. Pattern Recognition: Statistical, Structural and Neural Approaches, John Wiley and Sons, New York, 1992
68.T. Y. Young, and Fu, K. S, Handbook of Pattern Recognition and Image Processing, Academic Press, New York, 1986.
69.A. K. Jian, P. W. Robert, and M. Jianchang, “Statistical Pattern Recognition: A Review,” IEEE Transactions on Pattern Recognition Analysis and Machine Intelligence, Vol. 22, No. 1, pp. 4-37, 2000.
70.P. B. Chou, R. Rao, M. C. Sturzenbecker, F. Y. Wu, and V. H. Brecher, “Automatic Defect Classification for Semiconductor Manufacturing,” Machine Vision and Application, Vol. 9, No.4, pp. 201-214, 1997.
71.C. K. Chow, “An Optimum Character Recognition System Using Decision Factions,” IEEE Transformation on Electric Componet, EC-6, pp. 247-254, 1957
72.M. Nadler, and E. P. Smith, Pattern Recognition Engineering, John Wiley and Sons, New York, 1993.
73.王建智、江行全, “貝氏方法在機器視覺檢測分類中之應用”, 第四屆全國品質管理研討會, 元智大學, 台灣, pp.404-414, 1998.
74.T. H. Kim, T. H. Cho, Y. S. Moon, and S. H. Park,” An Automated Visual Inspection of Solder Joints Using 2D and 3D Features,” Proceedings of the 3rd IEEE Workshop on Application of Computer Vision, pp. 110-115, 1996.
75.B. C. Jiang, Lin, T. T., and Wang, C. C,”A Study of Using Machine Vision System for Surface Defects Classification,” Journal of the Chinese Institute of Industrial Engineering, Vol. 16, No. 4, pp.443-453, 1999.
76.S. Sharma, Applied Multivariate Techniques, John Wiley and Sons, New York, 1996.
77.R. Z. Liu, Y. Q. Shi, W. F. Kosonocky, and F. P. Higgins, “Infrared Solder Joint Inspection on Surface Mount Printed Circuit Boards,” Proceedings of the 38th Midwest Symposium on Circuits and System, Vol. 1, pp. 145-148, 1996
78.T. M. Cover, and P. E. Hart,” Nearest Neighbor Pattern Classification,” IEEE Transactions on Information Theory, Vol.13, pp. 21-27, 1967.
79.A. Djouadi, and E. Bouktache,” A Fast Algorithm for the Nearest-Neighbor Classifier,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 3, pp. 277-282, 1997.
80.L. Breiman, J. H, Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Tree, Wadsworth, California, 1984.
81.W. N. Venables, B. D. Ripley, Modern Applied Statistics with S-plus, 3rd, Springer-Verlag, New York, 1999.
82.T. S. Lim, W. Y. Loh, and Y. S. Shih, “A Comparision of Predication Accuracy, Complexity, and Training Time of Thirty-three Old and New Classification Algorithm,” Machine Learning, Vol.40, pp. 203-228, 2000.
83.P. B. Chou, A. R. Rao, M. C. Sturzenbecker, F. Y. Wu, and V. H. Becher, “Automatic Defect Classification for Semiconductor Manufacturing,” Machine Vision and Application, Vol. 9, No.4, pp. 201-214, 1997.
84.J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, 1993.
85.C. Neubauer, “Intelligent X-Ray Inspection for Quality Control of Solder Joints,” IEEE Transformation on Component, Packing, and Manufacturing Technology — Part C, Vol. 20, No. 2, pp. 111-120, 1997.
86.S. Jagannathon, “ Automatic Inspection of Wave Solder Joints Using Neural Network,” Journal of Manufacturing Systems, Vol. 16, No. 6, pp. 389-398, 1997.
87.Y. K. Ryu, and H. S. Cho, “Visual Inspection Scheme for Using in Optical Solder Joint Inspection System,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, pp. 3259-3264, 1996.
88.G. E. P. Box, and Cox, D. R., “An Analysis of Transformations (with discussion),”Journal of the Royal Statistical Society, Series B, Vol. 26, pp.211-246, 1964.
89.N. L. Johnson, “System of Frequency Curves Generated by Methods of Translation”, Biometrika, Vol. 26, No. 1/2, pp. 149-176, 1949.
90.G. J. Hahn, and S. S. Shapiro, Statistical Models in Engineering, John Wiley and Sons, New York, 1994.
91.N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions. Vol. 1, John Wiley and Sons, New York, 1994.
92.C. C. Wang, B. C. Jiang, and Y. H. Hsu, “PCB Solder Joints Defects Detection and Classification Using Machine Vision,” Proceedings of the 5th Annual International Conference Industrial Engineering — Theory, Application and Practices, December 13-15, 2000, National Tsing Hsu University, Taiwan, R. O. C.
93.P. A. Devijver, and J. Kittler, Pattern Recognition: A Statistical Approach, Prentice-Hall, Englewood Cliffs, NJ, 1982.
94.A. Jain, and D. Zongker, “Feature Selection- Evaluation, Application and Small Samples Performance,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 2, pp. 153-158, 1997.
95.R. S. Kenett, and S. Zacks, Modern Industrial Statistics Design and Control of Quality and Reliability, Duxbury Press, New York, 1998.
96.W. G. Cochran, and G. M. Cox, Experimental Design, John Wiley and Sons, New York, 1957.
97.D. C. Hoaglin, F. Mosteller and J. W. Tukey, Fundamentals of Exploratory Analysis of Variance, John Wiley and Sons, New York, 1990.
98.W .W. Daniel, Applied Nonparametric Statistics, Pws-Kent, Boston, 1990
99.M. G. Kendall, Rank Correlation Methods, 4th ed., London, 1970.
100.D. C. Montgomery, Design and Analysis of Experiments, 5th ed., John Wiley and Sons, New York, 2000.
101.G. E. P. Box, and J. S. Hunter, “The Fractional Factorial Design Part I,” Technometrics, Vol. 42, No.1, pp.28-47, 2000
102.R. L. Plackett, and J. P. Burman, “The Design of Optimum Multifactorial Experiments,” Biometrika, Vol. 33, pp. 305-325, 1946.
103.江行全、王建智、任志宏, “蝕刻製程中銅箔均勻度最佳化之控制”, 元智大學工業工程與管理系, 技術報告.
104.P. J. Ross, Taguchi Techniques for Quality Engineering, McGraw-Hill, New York, 1996.
105.R. A. Johnson, and D. W. Wichern, Applied Multivariate Statistical Analysis, Prentice-Hall, New York, 1992
106.C. L. Olson, “Comparative Robustness of Six Tests in Multivariate Analysis of Variance,” Journal of American Statistical Association, Vol. 69, pp. 894-908, 1974.
107.D. M. Tasi, and C. F. Tseng, “Surface Roughness Classification for Casting,” Pattern Recognition, Vol. 32, No.3, pp. 389-405, 1999.
108.S. S. Shapiro, How to Test Normality and Other Distributional Assumptions, American Society for Quality Control, New York, 1990.
109.T. P. Ryan, Modern Regression Methods, John Wiley and Sons, New York, 1997.
110.C. J. Kowalski, “Non-Normal Bivariate Distributions with Normal Marginals,” Biometrika, Vol. 56, No. 2, pp. 216-218, 1969.
111.Y. L. Tong, The Multivariate Normal Distribution, Springer-Verlag, New York, 1990.
112.J. L. Romeu and A. Ozturk, “A Comparative Study of Goodness-Of-Fit Tests for Multivariate Normality,” Journal of Multivariate Analysis, Vol. 46, pp. 309-334, 1993.
113.K. V. Mardia, “Tests for Univariate and Multivariate Normality,” In: P. R. Krishnaiah ed., Handbook of Statistics, North-Holland Publishing Co., 279-320.
114.D. G. Andrews, R. Gnanadesikan, and J. L. Warner, “Transformations of Multivariate Data,” Biometrics, Vol. 27, No. 4, pp. 825-840, 1971.
115.J. G. Davy, “A Comprehensive List of Wave Solder Defects and Their Probable Causes,” Presented at the 1985 Solder Technology Seminar, Naval Weapons Center, China Lake, CA, 1985.
116.J. Powell, and C. Brain, “CAD Reference for AOI,” Printed Circuit Fabrication, Vol. 12, No. 12, pp. 77-93, 1989.
117.M. Ito, I. Fujita, I, Y. Takeuchi, and T. Uchida,“ Pattern Defect Analysis and Evaluation of Printed Circuit Boards Using CAD Data,” Proceedings of the Electronic Manufacturing Technology Symposium, pp. 7-10, 1993.
118.B. Efron, and B. Tibshirani, An Introduction to the Bootstrap, Chapman and Hall, London, 1993.
119.P. W. Frey, and D. J. Slate, “Letter Recognition Using Holland-Style Adaptive Classifiers,” Machine Learning, Vol. 6, No. 2, 1991.
120.P. W. Frey, and D. J. Slate, “Letter Recognition Using Holland-Style Adaptive Classifiers,” Machine Learning, Vol. 6, No. 2, 1991.
121.C. J. Merz, and P. M. Murphy, UCI Repository of Machine Learning Databases, Department of Information and Computer Science, University of California, Irvune, CA, 1996. (http://www.ics.uci.edu /~mlearn/ MLRepository.html).
122.W. J. Conover, Practical Nonparametric Statistics, 2nd ed., John Wiley and Sons, New York, 1980.
123.S. K. Fan, B. C. Jiang, C. H. Jen, and C. C. Wang, “SISO Run-to-Run Feedback Controller using Triple EWMA Smoothing for Semiconductor Manufacturing Processes,” Submitted (2001).