(3.235.11.178) 您好!臺灣時間:2021/03/07 08:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊義明
研究生(外文):Yang Yit-Ming
論文名稱:從經濟觀點設計X-bar管制圖--製程失效機構屬韋氏分配(Weibull)
論文名稱(外文):The Design of X-bar Control Chart from Economic Viewpoint--With a Weibull Distributed Failure Mechanism
指導教授:陳雲岫陳雲岫引用關係
指導教授(外文):Yun-Shiow Chen
學位類別:博士
校院名稱:元智大學
系所名稱:工業工程研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:73
中文關鍵詞:管制圖經濟設計韋氏衝擊模式異常原因斷續工件生產連續流動生產
外文關鍵詞:Economic Design of Control ChartWeibull Shock ModelAssignable CauseDiscrete Part ProcessContinuous Flow Process
相關次數:
  • 被引用被引用:1
  • 點閱點閱:132
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
本論文在探討製程失效機構屬韋氏分配之管制圖經濟設計,研究中製程生產方式分為斷續工件生產及連續流動生產兩種 ; 製程異常原因之發生則考慮單一異常原因與多項異常原因兩項。根據生產方式及異常原因發生之時機,在論文中共提出三項研究主題 : (1) 斷續生產 管制圖之經濟設計,(2) 連續流動生產 管制圖之經濟設計,及(3) 個別值移動平均值管制圖之經濟設計。當製程失效機構屬韋氏分配時,其失效率會隨生產時間愈長而愈大,導致抽樣頻率也隨製程之生產時間愈長而增加,故本研究所推導出之經濟設計模式,具有可變動之抽樣間隔時間。論文中根據不同之成本因素、時間因素與韋氏分配參數,在損失成本最小化下,可求得最佳化經濟設計參數,包括樣本大小( ),變動抽樣間隔時間( ) 及管制界限寬度( )。
本研究所進行之分析涵蓋三項 : (1) 改變不同之韋氏分配參數( 為尺度(scale) 參數, 為形狀 (shape) 參數)探討損失成本之變化,得到在相同失效時間下, 愈大損失成本愈小 ; 在 固定下, 愈大損失成本愈大 ; 及在 固定下, 愈大損失成本愈大。(2) 在相同失效成本下,比較單一異常原因與多項異常原因之經濟設計模式,得到 =1下(指數分配) 單一異常原因與多項異常原因之損失成本並無顯著差異,但隨著 愈大,單一異常原因之損失成本則比多項異常原因大的多。(3) 成本因素與時間因素改變,對損失成本影響之敏感度分析,其中管制狀態下與非管制狀態下之生產成本對損失成本具有高敏感度,而消除異常原因之成本、尋找false alarm 之成本與時間則具有相當低之敏感性。
目前管制圖之經濟設計,因具有複雜之數學模式且因各項時間、成本參數值不易估計等因素,在實務上較少使用,但是只要改善生產環境,將經濟設計方法逐步簡化,其次加強使用著瞭解經濟設計之價值,未來在電腦程式及套裝軟體之製作與使用下,簡化使用者之運用步驟,相信管制圖之經濟設計將可成為未來製程管制之新趨勢。
Abstract
We consider an economic design of control charts with a Weibull distributed process failure mechanism in a process when there are possible single assignable cause or multiple assignable causes。There are three different topics considered in this thesis: (1) economic design of control charts in a discrete part process,(2) economic design of control charts in a continuous flow process,and (3) economic design of single observation in a moving average control chart。When the process failure mechanism follows a Weibull model having a increasing failure rate,the sampling frequency is tendency to be increased with the age of the system。 A cost model based on the variable sampling intervals,as opposed to fixed sampling intervals, is formulated and analyzed。 Optimal values of the economic design parameters including the sampling size ( ),the variable sampling intervals ( ) and control limit width ( ) are determined by minimizing loss-cost model based on the varieties of combinations of cost factors and Weibull parameters。The performance of the loss-cost with various Weibull parameters is studies,comparisons between a multiplicity-causes model and a single-cause model are performed under both having same time to failure,a sensitivity analysis is performed to illustrate the effects of incorrectly estimating the cost factors of the proposed models。
There are three major discovery from the numerical and sensitivity analysis。(1) Based on the same mean failure times,higher value of shape parameter ( ) results lower loss-cost。If shape parameter is fixed,larger scale parameter ( ) gives larger loss-cost,vice verso,if scale parameter is fixed,larger shape parameter gives larger loss- cost。(2) Based on the same loss cost,there is no significant difference between single assignable cause and multiple assignable cause model when =1 ( that is exponential distribution ),while as increases,loss cost increases in the single assignable cause model than in the multiple assignable cause model。(3) Loss cost will be affected significantly on the production cost either in control state or out of control state ; However,there is litter affection on the loss cost and time on the costs in discovering and removing causes and finding false alarms。
In practice,the application of economic design is still not popular due to the complex of the mathematical models,difficult to determine the cost parameters and hard to measure time factors。If we can improve production environment,simplify economic design model,enhance the value of usage of economic design and provide friendly interfaces between economic design commercial softwares and users,then economic design of control charts can play an important role in the process control in future time。
封面
論文目錄
表目錄
圖目錄
第一章研究背景與目的
第二章文獻探討
2.1. 單一異常原因的X-bar管制圖之經濟設計
2.2. X-bar和R管制圖之聯合經濟設計
2.3. 異常原因發生機率屬韋氏分配的X-bar管制圖之經濟設計
2.4. 多項異常原因的X-bar管制圖之經濟設計
2.5. 連續流動生產之經濟設計
第三章管制圖之經濟設計
3.1 符號定義與模式假設條件
3.2 單一異常原因模式-MI模式
3.3 多項異常原因下僅一個異常發生之模式-MII模式
3.4 多項異常原因下有二個異常發生之模式-MIII模式
第四章最佳化求解程式
第五章數據分析、最佳解分析及敏感度分析
5.1 MI模式
5.2 MII模式
5.3 MIII模式
5.4 總討論與分析
第六章結論
參考文獻
參考文獻
1.Banerjee, P.K. and Rahim, M.A., 1988, Economic Design of Control Charts under Weibull Shock Models, Technometrics, 30, 407~414.
2.Barker, K.R., 1971, Two Process Model in the Economic Design of an Chart, AIIE Transactions, 3, 257~263.
3.Chiu, W.K. and Cheung, K.C., 1977, An Economic Study of -Charts with Warning Limits, Journal of Quality Technology, 9, 166~171.
4.Chung, K.J., 1994, An Algorithm for Computing the Economically Optimal -Control Charts, for a Process with Multiple Assignable Causes, European Journal of Operation Research, 72, 350~363.
5.Chiu, W.K. and Wetherill, G.B., 1974, A Simplified Scheme for the Economic Design of -Charts, Journal of Quality Technology, 6, 63~69.
6.Chen, Yun-Shiow and Yang, Yit-Ming, 1999, Economic Design of Control Charts for Continuous Flow Process with Weibull in-Control Times, The 13th Asia Quality symposium, 17~20.
7.Chen, Yun-Shiow and Yang, Yit-Ming, 2000, Design of Economic x-Bar Control Charts in a Continuous Flow Process ―Case for Multiple Assignable Causes, The 14th Asia Quality symposium,85~91.
8.Carlyle, W.M, Montgomery, D.C. and Runger, G.C., (2000), Optimization Problems and Methods in Quality Control and Improvement, Journal of Quality Technology ,32, 1~17.
9.Collani, E.V., 1986, A Simple Procedure to Determine the Economic Design of an Control Chart, Journal of Quality Technology, 18,145~151.
10.Duncan, A.J., 1956, The Economic Design of x-bar-Charts Used to Maintain Current Control of a Process, Journal of the American Statistical Association, 51, 228~242.
11.Duncan, A.J., 1971, The Economic Design of -Charts When There is a Multiplicity of Assignable Cause, Journal of the American Statistical Association, 66, 107~121.
12.George, T and Lee, H.,L., 1988, Economic Design of Control Charts with Difference Control Limits for Different Assignable Cause, Management Science, 34, 1347~1366.
13.George, T. 1989, Economic Charts with Asymmetric Control Limits. Journal of Quality Technology, 21, 147~154.
14.Guooiang, Z. and Victor, B. 1997, Economic Statistical Design of Control Charts for System with Weibull in-Control Times, Computers & Industrial Engineering, 32, 575~586.
15.Gibra, I.N., 1971, Economically Optimal Determination of the Parameters of -Control Charts, Managements Science, 17, 635~646.
16.Goel, A.L., Jain, S.C., and Wu, S.M., 1968, An Algorithm for the Determination of the Economic Design of Charts Based on Duncan’s Model, Journal of the American Statistical Association, 63,304~320.
17.Ho, C. and Case, K.E., 1994, Economic Design of Control Charts: A Literature Review for 1981~1991, Journal of Quality Technology, 26, 39~53
18.Jaraiedi, M. and Zhuang, Z., 1991, Determination of Optimal Design Parameters of Charts When There is a Multiplicity of Assignable Cause, Journal of Quality Technology, 23, 253~258.
19.Knappenberger, H.A. and Grandage, A.H.E., 1969, Minimum Cost Quality Control Tests, AIIE Transaction 1, 24~32.
20.Koo, T.Y., and Case, K.E., 1990, Economic Design of X-bar Control Charts for Use in Monitoring Continuous Flow Processes, International Journal of Production Research, 28, 2001~2011.
21.Koo, T.Y., 1987, Economically-Based Monitoring of Continuous Flow Process Using Control Chart Techniques, Ph.D thesis, Oklahoma state university, USA.
22.Keats, J.B, Castillo, E.D, Collani, E.V. and Saniga, E.M., 1997, Economic modeling for statistical process control, Journal of Quality Technology 29, pp.144-147.
23.Lorenzen, T.J., and Vance, L.C., 1986, The Economic Design of Control Charts: A Unified Approach, Technometrics, 28, 3~10.
24.Mcwilliams, T.P., 1989, Economic Control Charts Designs and The in-Control Time Distribution: A Sensitivity Study, Journal of Quality Technology, 21, 103~110.
25.Montgomery, D.C., 1980, The Economic Design of Control Charts: A Review and Literature Survey, Journal of Quality Technology, 12, 75~87.
26.Ohta,H. and Rahim, M.A., 1997, A Dynamic Economic Model for an -Control Chart Design, IIE Transactions, 29, 481~486.
27.Parkhideh,B. and Case, K.E., 1989, The Economic Design of a Dynamic -Control Chart, IIE Transactions, 21, 313~323.
28.Rahim, M.A., 1993, Economic Design of Control Charts Assuming Weibull in-Control Times, Journal of Quality Technology, 25, 296~305.
29.Saniga, E.M., 1977, Joint Economically Optimal Design of and Control Charts, Managements Science, 24, 420~431.
30.Saniga, E.M., 1979, Joint Economic Design of and Control Charts with Alternate Process Models, AIIE Transactions, 11, 254~260.
31.Saniga, E.M., 1989, Economic Statistical Control Chart Design with an Application to and Charts, Technometrics, 31, 313~320.
32.Woodall, W.H. and Montgomery, D.C., 1999, Research Issues and Ideas in Statistical Process Control, Journal of Quality Technology 31, 376-386.
33.Woodall, W.H., 1986, Weaknesses of the Economic Design of Control Charts, Technometrics 28, 408-410.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔