(54.236.58.220) 您好!臺灣時間:2021/02/27 11:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃秀玲
研究生(外文):Hsiu-Lin Huang
論文名稱:以中空纖維管束非平衡萃取分離溶液中之銅與鋅離子
論文名稱(外文):Non-Equilibrium Extraction Separation of Cu(II) and Zn(II) from Binary Solutions in Hollow Fibers
指導教授:莊瑞鑫莊瑞鑫引用關係
指導教授(外文):Ruey-Shin Juang
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:93
中文關鍵詞:2-乙基己基磷酸液液萃取中空纖維薄膜
外文關鍵詞:D2EHPAliquid-liquid extractionHollow fibers
相關次數:
  • 被引用被引用:1
  • 點閱點閱:80
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文利用溶於煤油之二(2-乙基己基)磷酸萃取溶液中的銅與鋅離子,並以微孔性中空纖維薄膜接觸器進行分離回收。水相溶液於中空纖維管束之內管流動,有機相則流動於殼側,兩相採對立流動形式,進行單成分與多成分萃取實驗。
在薄膜萃取系統中,藉由改變pH值、水相溶液中金屬離子濃度、及不同金屬離子(銅和鋅之比較),探討其對萃取效果之影響。由實驗結果得知,D2EHPA對Zn2+的萃取效果遠大於Cu2+,且萃取效果隨著進料相pH值的提高而增加,亦隨進料相初濃度的增加而提昇,且低於pH 3的操作條件將使Cu2+的萃取率降低,低於pH 2的操作條件則Zn2+、Cu2+的萃取率皆降低。
另外,在雙成分萃取系統中,對於金屬離子之選擇性會隨著水相pH值的降低、萃取劑濃度的降低及金屬離子濃度比的增加而提昇,金屬離子的總濃度則對選擇率影響不大。
為探討金屬在中空纖維薄膜中的理論質傳現象,本文應用液-液萃取所得到的平衡常數及質傳之基本理論,建立理論傳送模式,其中包括金屬的水相擴散、有機相擴散及薄膜擴散等方程式,並忽略反應阻力;利用FORTRAN 5.0作數值運算後,求得傳送過程中濃度之時間變化,與實驗值比較(其標準誤差為4.63 %),並利用model分析其質傳中各項阻力的大小,發現水相阻力百分比會隨著水相金屬離子濃度、氫離子濃度的增加及有機相萃取劑濃度的降低而下降,進而探討雙成分萃取系統中的競爭效應。

The extraction recovery and separation of Cu2+ and Zn2+ from sulfate solutions in a microporous hollow fiber module with a kerosene solution of di(2-ethylhexyl)phosphoric acid was investigated. The aqueous solution was fed in the tube side of the module, and the organic solution flowed across the shell side in parallel to the aqueous solution.
The extraction efficiency of metal increased with increasing pH values and the initial metal concentrations. The extraction coefficient of Zn2+ was large than Cu2+. When the solution pH was less than 3, it’s not easy to extract Cu2+; and when the pH was below 2, it’s bad to extract Zn2+ and Cu2+.
In binary metal system, the separation factors of Zn2+ over Cu2+ were dependent of pH values, extractant concentrations and metal concentration ratios. But the effect of total metal concentration on separation factor was not noticeable.
Based on the experimental data obtained from liquid-liquid extraction, a transport model was presented considering aqueous layer diffusion, membrane diffusion, and organic layer diffusion. Compared with experimental results, the model also revealed that the competitive of Zn2+ over Cu2+ occurred in binary metal system. The aqueous phase resistant ratio was increased with increasing the initial metal concentrations, concentrations of hydrion and decreasing with extractant.

摘要I
AbstractII
誌謝III
目錄IV
表目錄VIII
圖目錄IX
符號說明XIV
第一章 緒論1
1-1 前言1
1-2 溶劑萃取2
1-2-1 有機溶劑2
1-2-2 萃取劑2
1-2-3 稀釋劑7
1-2-4 溶解度規律7
1-3 萃取因素之影響8
1-3-1 萃取劑的影響8
1-3-2 酸鹼度的影響9
1-3-3 金屬濃度的影響10
1-3-4 溫度的影響10
1-3-5 稀釋劑的影響11
1-4 中空纖維薄膜萃取(Hollow Fiber Membrane Extraction)11
1-5 研究動機12
第二章 實驗部分15
2-1 實驗儀器及藥品15
2-1-1 儀器部分15
2-1-2 藥品部分16
2-2 實驗步驟及分析方法17
2-2-1 密度與黏度的測定17
2-2-2 萃取平衡實驗17
2-2-3 薄膜萃取實驗18
第三章 傳送理論模式24
3-1 萃取平衡24
3-2 建立薄膜萃取之理論模式26
3-3 總傳送機構式之推導28
3-3-1 金屬與氫離子在進料相-薄膜界面間之傳送速率式29
3-3-2 金屬離子與萃取劑的界面化學反應29
3-3-3 薄膜中萃取劑和複合物由進料相-薄膜界面至有機相界面之傳送速率式30
3-3-4 複合物和萃取劑由有機相-薄膜界面至有機相之傳送速率式30
3-4 理論傳送模式中各係數之取得32
3-4-1 擴散係數之估計32
3-4-2 質傳係數之估計39
3-5 傳送理論值之計算45
3-5-1 起始值(t=0)之假設45
3-5-2 求出各物質於薄膜萃取反應界面上濃度45
3-5-3 求另一時間(t2)的起始濃度46
第四章 結果與討論48
4-1 平衡常數48
4-2 單成分萃取實驗49
4-2-1 進料相pH值的影響49
4-2-2 進料相金屬濃度的影響53
4-2-3 萃取劑濃度的影響55
4-3 雙成分薄膜萃取實驗56
4-3-1 進料相pH值的影響56
4-3-2 進料相金屬濃度比的影響57
4-4 單成分萃取之理論值與實驗值比較62
4-4-1 進料相pH值的影響63
4-4-2 進料相濃度的影響65
4-4-3 萃取劑的影響67
4-5 雙成分萃取之選擇率68
4-5-1 進料相pH的影響68
4-5-2 進料相濃度的影響69
4-5-3 進料相金屬離子濃度比的影響71
4-5-3 萃取劑濃度的影響72
4-6 阻力之計算74
第五章 結論86
參考文獻88
自述93

Ajawin, L. A., Perez de-Ortiz, E. S. and Sawistows, K. H., “Extraction of zinc by di(2-ethylhexyl)phosphoric acid”, Chem. Eng. Res. Des., 61(1), 62-66 (1983).
Akita, S. and Takeuchi, H., “Sorption and separation of metals from aqueous solution by a macromolecular resin containing tri-n-octylamine”, J. Chem. Eng. Jpn., 23, 439-443 (1990).
Bart, H. J. and Rousselle, H. P., “Microkinetics and reaction equilibrium in the system ZnSO4/D2EHPA/isododecane”, Hydrometallurgy, 51, 285-298 (1999).
Cheng, C. Y., ”Purification of synthetic laterite leach solution by solvent extraction using D2EHPA”, Hydrometallyurgy, 56, 369-386 (2000).
Daiminger, U. A., Geist, A. G., Nitsch, W. and Plucinski, K., “Efficiency of hollow fiber modules for nondispersive chemical extraction”, Ind. Eng. Chem. Res., 35, 184-191 (1996).
Danesi, P. R., Horwitz, E. P. and Vandegrift, G. F., “Mass transfer rate through liquid membranes : interfacial chemical reactions and diffusion as simultaneous permeability controlling factors”, Sep. Sci. Technol., 2, 16, 201-211 (1981).
de Hann, A. B., Bartels, P. V. and Graauw, J., “Extraction of metals ions from waste water modeling of the mass transfer in a supported- liquid membrane process”, J. Membr. Sci., 45, 281-297 (1989).
Gabelman, A. and Hwang, S. T., ”Hollow fiber membrane contactors”, J. Membr. Sci., 159, 61-106 (1999).
Galan, B., Roman, F. S., Irabien, A. and Ortiz, I., “Viability of the separation of Cd from highly concentrated Ni-Cd mixtures by non-dispersive solvent extraction”, Chem. Eng. J., 70, 237-243 (1998).
Geist, A., Plucinski, P. and Nitsch, W., ”Mass transfer kinetics of reactive multi-cation co-extraction into bis(2-Ethylhexyl) phosphoric acid”, Solvent Extr. Ion Exch., 18, 493-515 (2000).
Grimm, R. and Kolarik, Z., “Acidic organophosphorus extractants-XIX extraction of Cu, Co, Ni, Zn and Cd by di(2-ethylhexyl)phosphoric acid”, J. Inorg. Nucl. Chem., 36, 189-1982 (1974).
Horvath, A. L., “Handbook of Aqueous Electrolyte Solution: Physical Properties, Estimation and Correlation Methods”, Ellis Horwood Limited, New York, 263-298 (1985).
Hu, S. Y. and Wiencek, J. M., “Emulsion-liquid-membrane extraction of copper using a hollow-fiber contactor”, AIChE J., Vol. 44, 570-581 (1998).
Huang, T. C. and Tsai, T. H., “Extraction of nickel from sulfate solutions by bis(2-ethylhexyl)phosphoric acid”, Ind. Eng. Chem. Fundam., 25, 752-757 (1986).
Ihm, S. K., Lee, H. Y. and Lee, D. H., “Kinetic study of the extraction of copper(II) by di(2-rthylhexyl)phosphoric acid in a Lewis-type cell”, J. Membr. Sci., 37, 181-191 (1988).
Juang, R. S. and Huang, H. C., “Non-dispersive extraction of metals using hydrophilic microporous and cation exchange membranes”, J. Membr. Sci., 156, 179-186 (1999).
Kiani, A., Bhave, R. R. and Sirkar, K. K., “Solvent extraction with immobilized interfaces in a microporous hydrophobic membrane”, J. Membr. Sci., 20, 125-145 (1984).
Kojima, I., Fukuta, J. and Tanaka, M., “Extraction of copper(II) and sodium with di(2-ethylhexyl)phosphoric acid”, J. Inorg. Nucl. Chem., 31, 1815-1821 (1969).
Kolev, S. D., Argiropoulos, G., Hamilton, I. C. and Paimin, R., “Mathematical modeling of membrane extraction of gold(III) from hydrochloric acid solutions”, J. Membr. Sci., 261-269 (1997).
Komasawa, I., Otake, T. and Higaki, Y., “Equilibrium studies of the extraction of divalent metals from nitrate media with di(2-ethylhxyl)phosphoric acid”, J. Inorg. Nucl. Chem., 43, 351-3356 (1981).
Lo, T. C., Baird, M. H. and Hanson, C., “Handbook of Solvent Extraction”, John Wiley and Sons Inc. (1983).
Miyake, Y., Matsuyama, H.; Nishida, M.; Nakai, M.; Nagase, N. and Teramoto, M., “Kinetics and mechanism of metal extraction with acidic organophosphorusextractants (I): Extraction rate limited by diffusion process”, Hydrometallurgy, 23, 19-35(1990).
Owusu, G., “Selective extractions of Zn and Cd from Zn-Cd-Co-Ni sulphate solution using di-2-ethylhexyl phosphoric acid extractant”, Hydrometallyurgy, 47, 205-215 (1998).
Qiu, D. Y., Zheng, L. G. and Ma, R. J., “The behavior-structure relation in the extraction of cobalt(II), nickel(II), copper(II) and calcium(II) by monoacidic organophosphorus extractants”, Solvent Extr. Ion Exch., 7, 937-950 (1989).
Reid, R. C., Prausnitz, J. M. and Poling, B. E., “The Properties of Gases and Liquids”, 4thed., McGraw-Hill, New York, 598-611 (1987).
Sainz-Diaz, C. I., Klocher, H., Marr, R. and Bart, H. J., “New approach in the modelling of the extraction equilibrium of zinc with bis-(2-ethylhexyl) phosphoric acid”, Hydrometallurgy, 42, 1-11 (1996).
Sastre, A. M. and Muhammed, M., “The extraction of zinc extraction from sulfate medium with di(2-ethylhexyl)phosphoric acid”, J. Chem. Eng. Jpn., 19, 379-386 (1986).
Small, H., “Gel liquid extraction-The extraction and separation of some metals salts using tri-n-butyl phosphate gels”, J. Ionrg. Nucl. Chem., 18, 232-244 (1961).
Tait, B. K., “Two-phase potentiometric metal extraction titrations of silver(I), copper(II) and cadmium(II) using some cation- exchangers as extractants”, Talanta, Vol. 42, 137-142 (1995).
Vandergrift, G. F., Lee, H. Y. and Lee, D. H., “Interfacial activity based acids”, J. Inorg. Nucl. Chem., 42, 119-191 (1980).
Walter, J. A., Kneibl, F. and Nitsch, W., in Solvent Extraction in the Process Industries (Proc. ISEC 1993) Vol. 2, 1206 (1993).
Yang, C. F., Cussler, E. L., “Reaction dependent extraction of copper and nickel using hollow fibers”, J. Membr. Sci., 166, 229-238 (2000).
沈力人、楊品釗、宋曉軍,‘液膜法萃取山梨酸的研究’,Technology of Treatment, 25, 74-78 (1999).
阮國棟,‘工業廢水處理技術(I)─有害成分去除法’,台北科技出版社 (1989)。
張經麟,‘中空纖維膜萃取器質傳性能的研究’,河南師範大學學報自然科學版(大陸期刊),Vol. 22, No.2 May, 1994.
莊瑞鑫,‘以二(2-乙基己基)磷酸萃取金屬離子之質量傳送‘,博士論文,成功大學,台南 (1986)。
陸九芳、李總成、包鐵竹,‘分離過程化學’,41-89,清華大學出版社,中國大陸 (1993)。
楊伯和、周梅,‘有機溶劑萃取體系中的離子交換’,27-53冶金工業出版社,中國大陸 (1993)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔