(34.201.11.222) 您好!臺灣時間:2021/02/25 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王建智
研究生(外文):Jiann-Jyh Wang
論文名稱:製膜溶劑對聚(1-三甲基矽烷-1-丙炔)膜之氣體滲透性隨時間下降行為的影響
論文名稱(外文):Influence of the Casting Solvent on the Gas Permeability Decay of Poly[1-(trimethylsilyl)-1-propyne] (PTMSP) Membranes with Time
指導教授:孫一明
指導教授(外文):Yi-Ming Sun
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:85
中文關鍵詞:滲透係數真實密度物理老化老化間隙自由體積熱處理程序
外文關鍵詞:permeabilitypycnometric densityphysical agingdecayinterstitial free volumethermal treating process
相關次數:
  • 被引用被引用:6
  • 點閱點閱:148
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:2
本篇研究主要在探討使用不同成膜溶劑所製備PTMSP膜的物理老化現象,並藉由密度與氣體滲透係數隨時間之改變速率來描述各膜材之物理老化速率。
由於微結構的變化,各溶劑所成PTMSP膜之整體密度與真實密度均隨時間的增加而上升。膜內自由體積分佈重新排列,間隙自由體積大幅降低,導致膜材之真實密度之上升速率較整體密度高出許多。於PTMSP膜中,氧氣的滲透係數較氮氣為大,隨著時間的增加,兩種氣體的滲透係數均會受到物理老化的影響而下降,但其下降速率不同以致氧氮透係選擇比會隨時間增加。
不同溶劑所成的PTMSP膜材擁有不同的老化速率,但各膜材的真實比容下降速率常數與滲透老化速率常數的變化趨勢是相同的,而略呈一線性關係。
膜材會因加熱程序而促使其物理老化加速,膜材密度與氣體滲透係數的變化速率皆會隨熱處理溫度的上升而增加,而膜材因熱處理而加速物理老化的表現與一般常溫物理老化的結果相符。
溶劑分子吸附對於新鮮PTMSP膜內的鏈結空間無太大的影響,但對於已老化之膜材卻可略微回復經老化所改變的氣體滲透性質。
The physical aging in the poly[1-(tri- methylsilyl)-1-propyne] (PTMSP) membranes prepared with various casting solvents were studied. It has been observed that the specific volume of the membranes and the permeabilities of gases through the membranes decayed with time. The bulk and pycnometric density of the membranes increased with time due to the microstructure change of the polymer membranes. However, the increasing rate of the membrane pycnometric density was higher than that of the membrane bulk density, resulting from an inner rearrangement of distribution of free volume and a greater reduction rate of the interstitial free volume. PTMSP membranes prepared by different casting solvents showed different changing rates of permeability and specific volume, but the decay rate constant of the permeability (kp) is proportional to the decay rate constant of the specific pycnometric volume (kv). It is shown that the changing rates of the membrane density and permeability increased with thermal treating temperature. The aging results obtained at the elevated temperatures were consistent with those at room temperature. After treating the aged membranes with a solvent vapor, decayed membrane permeabilities could be partially recovered.
中文摘要Ⅰ
英文摘要Ⅱ
目錄Ⅲ
表目錄Ⅵ
圖目錄Ⅶ
符號說明Ⅹ
第一章 緒論1
1.1 玻璃態高分子1
1.2 氣體分離3
1.3 聚(1-三甲基矽烷-1-丙炔)聚合物
Poly[1-(trimethylsilyl)-1-propyne] (PTMSP)4
1.4 研究目的與範疇5
第二章 研究方法與原理7
2.1 氣體滲透(Gas permeation)7
2.1.1 擬穩態法(Pseudo-steady-state method)7
2.1.2 時間滯留法(Time-lag method)8
2.1.3 滲透理論10
2.1.4 擴散理論11
2.1.5 氣體滲透實驗12
2.2 蒸氣吸附13
2.2.1 吸附等溫曲線13
2.2.2 影響吸附的因素16
2.2.3 吸附動力學17
2.2.4 吸附實驗18
2.3 自由體積鬆弛理論 (Free volume relaxation theory)19
第三章 實驗方法22
3.1 藥品 22
3.2 設備 22
3.3 膜材製備23
3.4 膜材密度量測24
3.4.1 真實密度24
3.4.2 整體密度25
3.4.2.1 外觀尺寸測定法
(external dimension method)25
3.4.2.2 阿基米得法 (Archimedes’ principle)25
3.5 氣體滲透實驗26
3.6 膜材熱處理實驗28
3.7 吸附實驗28
3.8 膜材老化回復實驗30
第四章 結果與討論31
4.1 不同溶劑成膜31
4.2 密度 32
4.2.1 整體密度32
4.2.2 真實密度33
4.3 滲透實驗34
4.4 物理老化35
4.4.1 滲透老化速率常數(kp)36
4.4.2 真實比容下降速率常數(kv)37
4.5 熱處理實驗38
4.5.1 熱處理溫度之影響38
4.5.2 熱處理時間之影響39
4.6 吸附實驗41
4.7 膜材老化回復實驗41
4.8 玻璃態高分子之體積變化與物理老化之解釋42
第五章 結論75
參考文獻78
附錄85
附錄一85
表目錄
Table 1.1 常用氣體之動力學直徑3
Table 4.1 膜材在氧氣與氮氣下之滲透老化速率常數
(unit: day-1)43
Table 4.2 膜材之真實比容下降速率常數 (unit:day-1)43
Table 4.3 以toluene與styrene為溶劑所成膜材於各氣體
下之滲透老化活化能 (unit: kJ/mol)43
Table 4.4 各膜材於老化天數約120天時對於氧氣與氮氣
在不同上游壓力下之滲透係數平均值
(unit: barrer)43
圖目錄
Figure 1.1 Volume-temperature behavior of an
amorphous polymer.2
Figure 2.1 薄膜滲透實驗中透過量對時間之關係9
Figure 2.2 (a) Type I, Henrry''s law; (b) Type II,Langmuir; (c) Type III, Flory-Huggins; (d) Type IV, BET;
(e) Type V, Dual mode 14
Figure 2.3 (a) Case I and (b) Case II sorption18
Figure 2.4 Anomalous or non-Fickian sorption18
Figure 3.1 Pycnometer 裝置簡圖24
Figure 3.2 阿基米得法實驗簡圖25
Figure 3.3 滲透實驗裝置圖 27
Figure 3.4 吸附實驗裝置圖 29
Figure 4.1 以不同溶劑成膜,各PTMSP膜之初始密度
與初始滲透係數 44
Figure 4.2 以不同溶劑成膜,各PTMSP膜整體密度與
時間之關係 45
Figure 4.3 以不同溶劑成膜,各PTMSP膜中真實密度
與時間之關係 46
Figure 4.4 以不同溶劑成膜,在各PTMSP膜中整體比
容與真實比容隨時間之關係47
Figure 4.5 各不同溶劑所成之PTMSP膜中,相對真實
密度與時間之關係48
Figure 4.6 氧氣與氮氣在以toluene為溶劑所成之PTMSP
膜中,滲透係數與時間的關係49
Figure 4.7 氧氣與氮氣在以鄰、間、對-二甲苯為溶劑
所成之PTMSP膜中,滲透係數與時間的關係50
Figure 4.8 氧氣與氮氣在以n-hexane為溶劑所成之PTMSP
膜中,滲透係數與時間的關係51
Figure 4.9 氧氣與氮氣在以styrene為溶劑所成之PTMSP
膜中,滲透係數與時間的關係52
Figure 4.10 氧氣與氮氣在以decalin為溶劑所成之PTMSP
膜中,滲透係數與時間的關係53
Figure 4.11 氧氣與氮氣在以styrene為溶劑所成之PTMSP
膜中,滲透係數與進料壓力的關係54
Figure 4.12 氧氣於各PTMSP膜中之氣體滲透老化速率
常數之決定55
Figure 4.13 氮氣於各PTMSP膜中之氣體滲透老化速率
常數之決定56
Figure 4.14 以不同溶劑所成PTMSP膜之氧氮選擇比與
時間之關係57
Figure 4.15 以不同溶劑成膜,各PTMSP膜真實比容下
降速率常數之決定58
Figure 4.16 各不同溶劑所成PTMSP膜之滲透老化速率
常數與真實比容下降速率常數之關係59
Figure 4.17 固定熱處理時間下,改變熱處理溫度對膜材
氣體滲透性之影響 (熱處理時間:1 hr)60
Figure 4.18 固定熱處理時間下,改變熱處理溫度對膜材
氣體滲透性之影響 (熱處理時間:2 hr)61
Figure 4.19 固定熱處理時間下,改變熱處理溫度對膜材
氣體滲透性之影響 (熱處理時間:3 hr)62
Figure 4.20 固定熱處理溫度下,改變熱處理時間對膜材
氣體滲透性之影響 (熱處理溫度:60℃)63
Figure 4.21 固定熱處理溫度下,改變熱處理時間對膜材
氣體滲透性之影響 (熱處理溫度:120℃)64
Figure 4.22 固定熱處理溫度下,改變熱處理時間對膜材
氣體滲透性之影響 (熱處理溫度:180℃)65
Figure 4.23 固定熱處理溫度下,改變熱處理時間對膜材
整體密度之影響 (熱處理溫度:180℃)66
Figure 4.24 固定熱處理溫度下,改變熱處理時間對膜材
真實密度之影響 (熱處理溫度:180℃)67
Figure 4.25 固定熱處理溫度下,改變熱處理時間對膜材
氣體滲透選擇性之影響 (熱處理溫度:180℃)68
Figure 4.26 改變膜材熱處理溫度與滲透加速老化速率常
數之關係69
Figure 4.27 THF於PTMSP膜(以decalin為溶劑)中之吸
附濃度與活性係數關係圖70
Figure 4.28 THF於PTMSP膜(以n-hexane為溶劑)中之
吸附濃度與活性係數關係圖71
Figure 4.29 氧氣與氮氣在以decalin為溶劑所成之PTMSP
膜中,經甲苯溶劑吸附後之滲透係數值72
Figure 4.30 氧氣與氮氣在以styrene為溶劑所成之PTMSP
膜中,經甲苯溶劑吸附後之滲透係數值73
Figure 4.31 玻璃態高分子之體積變化與物理老化之關係圖74
Auvil, S. R., R. Srinivasan, and P. M. Burban, “Symposium on membranes for gas and vapor separation,” Suzdal, USSR, Febr. 1989
Breck, D. W., Zeolite Molecular Sieves, John Wiley, New York, 1974
Bueche. F., Physical Properties of Polymers, Interscinece, New York, 1962
Consolati, G., I. Genco, M. Pegoraro, and L. Zanderighi, “Positron annihilation lifetime (PAL) in poly(1-(trimethylsilyl)propyne) (PTMSP): Free volume determination and time dependence of permeability,” J. Polym. Sci., Polym. Phys. Edn., 34(2), 357-367 (1996)
Crank J. and G. S. Park (eds.), Diffusion in Polymer, Academic Press, New York, 1968
Curro, J. G., R. R. Lagasse, and R. Simha, Macromolecules, 15, 1621 (1982)
Cussler, E. L., Diffusion: Mass Transfer in Fulid System, 2nded., Cambridge University Press, New York, NY, 1997
DeV Naylor, T., ”The synthesis, characterization, reactions, and applications,” in G. Allen and J. C. Bevington (Eds.), Comprehensive Polymer Science, Dergman Press, New York, 1989, Chap. 20.
Duda, J. L., Devolatilization of Polymers, J. A. Biesenberger (Ed.), Hanser Publishers, Munich 1983, Chap. 3.
Feng, X. and Y. M. Huang, “Estimation of activation energy for permeation in pervaporation processes,” J. Membrane Sci., 118, 127-131 (1996)
Freeman, B. D. and I. Pinnau, Polymer Membrane for Gas and Vapor Separation, American Chemical Society, 1999, Chap.1.
Hamano, T., T. Masuda and T. Higashimura, ”Copolymerization of 1-(trimethylsilyl)-1-propyne with disubstituted hydrocarbon acetylenes,” J. Polym. Sci., Polym. Chem. Ed., 26, 2603 (1988)
Ho, W. S. W. and K. K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York, 1992
Hofmann, D., L. Fritz, J. Ulbrich and D. Paul, ”Molecular modelling of amorphous membrane polymer,” Polymer, 38 6145-6155 (1997)
Jia, J. and G. L. Baker, “Cross-linking of poly[1- (trimethylsilyl)-1-propyne] membrane using bis(aryl azides),” J. Polym. Sci., Polym. Phys. Ed., 36, 959-968 (1998)
Joly, C., D. Le Cerf, C. Chappey, D. Langevin and G. Muller, “Residual solvent effect on the permeation properties of fluorinated polyimide films,” Sep. Purif. Tech., 16, 47-54 (1999)
Kaelbe, D. H., Rheology, Vol. 5, F. R. Eirich (Ed.), Academic Press, New York, 1969
Koros, W. J. and D. R. Paul, “Carbon dioxide sorption and transport in polycarbonate,” J. Polym. Sci., Polym. Phys. Ed., 14, 687-702 (1976)
Koros, W. J. and D. R. Paul, “Design consideration for measurement of gas sorption in polymer by pressure decay,” J. Polym. Sci., Polym. Phys. Ed., 14, 1903 (1976)
Lide D. R. and H. P. R. Frederikse (Eds.), Handbook of Chemistry and Physics, CRC Press, London, 1993-1994, Chap. 5.
Masuda, T., E. Isobe, T. Higashimura, and K. Takada, “Poly[1-(trimethylsilyl)-1-propyne]: A new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability,” J. Amer. Chem. Soc., 105, 7473-7474 (1983)
Masuda, T., Y. Iguchi, B-Z. Tang, and T. Higashimura, “Diffusion and solution of gases in substituted polyacetylene membranes,” Polymer, 29, 2041 (1988)
McCaig, M. S. and D. R. Paul,”Effect of film thickness on the changes in gas permeability of a slassy polyarylate due to physical aging Part I,” Polymer, 41, 629-637 (2000)
McCaig, M. S. and D. R. Paul,”Effect of film thickness on the changes in gas permeability of a slassy polyarylate due to physical aging Part II,” Polymer, 41, 639-648 (2000)
Mulder, M., Basic Principles of Membrane Technology, Kluwer Avademic Publisher, Londen, 1991, Chap. 2. and Chap. 5.
Nagai, K. and T. Nakagawa, “Effects of aging on the gas permeability and solubility in poly(1-trimethylsilyl-1-propyne) membrane synthesized with various catalysts,” J. Membrane Sci., 105, 206-272 (1995)
Nagai, K., A. Higuchi and T. Nakagawa, “Bromination and gas permeability of poly(1-trimethylsilyl-1-propyne) membrane,” J. Appl. Polym. Sci., 54, 1207-1217 (1994)
Nagai, K., B. D. Freeman, and A. J. Hill, ”Effect of physical aging of poly(1-rimethylsilyl-1-propyne) films synthesized with TaCl5 and NbCl5 on gas permeability, fractional free volume, and positron annihilation lifetie spectroscopy parameters,” J. Polym. Sci., Polym. Phys. Ed., 38, 1222-1239 (2000)
Nakagawa, T., In Polymeric Gas Separation Membrane; D. R. Paul, Yu. P. Yampolskii, Eds.; CRC Press: Boca Raton, FL, 399, 1994
Plate, N. A., A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, V. V. Volkov and Yu. P. Yampolskii, ”Gas and vapor permeation and sorption in poly (trimetylsilylpropyne),” J. Membrane Sci., 60, 13-24 (1991)
Pinnau, I. and L. G. Toy, “Transport of organic vapors through poly(1-trimethylsilyl-1-propyne) membrane,” J. Membrane Sci., 116(2), 199-209 (1996)
Pinnau, I., C. G. Casillas, A. Morisato and B. D. Freeman, “Long-term permeation properties of poly(1-trimethylsilyl- 1-propyne) membranes in hydrocarbon-vapor environment,” J. Polym. Sci., Polym. Phys. Edn., 35(10), 1483-1490 (1997)
Prasad, R., R. L. Shaner, and K. J. Doshi, In Polymeric Gas Separation Membrane, CRC Press, Boca Raton, FL, 1994
Ramachandra, P., R. Ramani, G. Ramgopal, and C. Ranganathaiah, “Physical ageing of poly(chlorotrifluoroethylene): A Positron Annihilation study,” Eur. Polymer J., 33, 1701-1711 (1997)
Rogers, C. E., “Permeation of gases and vapors in polymers, ”in: J. Comyn, Ed., Polymer Permeability, Elsevier, Londen, 1988, Chap 2.
Rogers, C. E., Physics and Chemistry of the Organic Solid State, Fox, D., M. M. Labes, and A. Weissberger, Eds., VolΠ, Wiley Interscience, New York, 1965, Chap. 6.
Savoca, A. C., A. D. Surnamer, and C. F. Tien, “Gas transport in Poly(silylpropynes): the chemical structure point of view,” Macromolecules, 26, 6211-6216 (1993)
Shimomura, H., K. Nakanishi, H. Odani, M. Kurata, T. Masuda, and T. Higashimura, “Permeation of gases in poly[1- (trimethylsilyl)- 1-propyne],” Kobunshi Ronbunshu, 43, 747 (1986)
Srinivasan, R., S. R. Auvil, and P. M. Burban, “Elucidating the membranes of gas transport in poly[1-(trimethylsilyl)- 1-propyne] (PMSP) membranes,” J. Membrane Sci., 86, 67 (1994)
Strathmann, H., “Membrane separation process,” J. Membrane Sci., 9, 121-189 (1989)
Struik, L. E., Physical Ageing in Amorphous Polymer and Other Materials, Elsevier, Amsterdam, 1978
Tasaka, S., N. Inagaki, and M. Igawa, “Effect of annealing on structure and permeability of poly(1-trimethylsilyl -1-propyne),” J. Polym. Sci., Polym. Phys. Ed., 29, 691-694 (1991)
Tiemblo, P., J. Guzman, E. Riande, C. Mijangos and H. Reinecke, “Effect of physical aging on the gas transport properties of PVC and PVC modified with pyridine groups,” Polymer, 42, 4817-4823 (2001)
Toy, L. G., K. Nagai and B. D. Freeman, “Pure-gas and vapor permeation and sorption properties of poly[1-phenyl-2- [p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA),” Macromolecules, 33, 2516-2524 (2000)
Windle, A. H., ”Case II sorption,” in: J. Comyn.(Ed.), Polymer Permeability, Elservier, London, 1989, Chap. 3.
Yang, J. S. and G. H. Hsiue, “Novel dry poly[1-(trimethylsilyl) -1-propyne]-AgClO4 complex membrane for olefin/paraffin separations,” J. Membrane Sci., 120, 69-76 (1996)
郭文正與曾添文,薄膜分離, 高立, 1988, Chap. 6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔