跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 11:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張恭維
研究生(外文):Kung Wei Chang
論文名稱:結合關聯法則與模糊叢聚之網際探勘架構
論文名稱(外文):The Web Mining Framework Combining Association Rules And Fuzzy Clusters
指導教授:劉俞志劉俞志引用關係
指導教授(外文):Yu-Chin Liu
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:44
中文關鍵詞:網際探勘使用者瀏覽路徑模糊叢聚分析相似程度關聯法則
外文關鍵詞:Web MiningUser SessionFuzzy ClusterSimilarityAssociation Rule
相關次數:
  • 被引用被引用:12
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:1
現今網際探勘領域中,統計叢聚技術常被用來分析網站瀏覽者對網頁之瀏覽偏好。然而此法只能將每一使用者瀏覽路徑歸類於單一群組中,即事先假設每一瀏覽路徑只包含單一種使用者偏好,卻忽略同一使用者瀏覽路徑可能包含數個網頁偏好。對此,另有學者提出模糊叢聚技術以彌補上述之不足。但此類型研究於分析瀏覽路徑相似程度方面,只能根據網頁距離計算。因此當網站瀏覽者以不同瀏覽路徑觀看相同網頁時,容易產生錯誤的分析結果。
針對上述情況,本論文提出一結合模糊叢聚技術及關聯法則之網際探勘架構。此法首先過濾瀏覽路徑中可能造成分析誤差之超連結網頁,再利用關聯法則計算網頁間之關聯性。最後則擴充模糊叢聚技術於瀏覽路徑相似度之計算方式,以網頁關聯法則信心度取代網頁距離,藉由適當的分群以求得使用者真正之瀏覽偏好。
Lately, most studies have relied on statistic clustering techniques to analyze web user profile data in web mining. However, this approach can only sort each user session into a single cluster. That is, it ignores a user session may contain several browsing prefers. According to this insufficiency, fuzzy clustering techniques were proposed instead. But those methods only can use similarity score of session to calculate the similarity between pages. Therefore, if users browse the same web page by different paths, that causes wrong results.
This research proposes a framework which combines the fuzzy clustering and association rules. This approach filters out the noisy data, and employs association rules to calculate the confidence of the rule as the association between different URL addresses. Finally, an improved fuzzy clustering is adopted, which replaces the similarity score of session with the confidence between pages, to found out the user prefers effectively.
中文摘要ii
英文摘要iii
誌謝iv
目錄v
表目錄vii
圖目錄viii
第一章緒 論1
1.1 研究動機與背景1
1.2 研究目的與重要性3
1.3 章節設計4
第二章 文獻探討5
2.1 網際探勘5
2.2 關聯法則7
2.3 模糊叢聚技術10
第三章 結合關聯法則與模糊叢聚技術的網際探勘15
3.1 網站瀏覽記錄的前置處理16
3.2 使用者瀏覽路徑相似程度之計算18
3.3 對使用者瀏覽路徑的模糊叢聚分析23
3.4 探勘方法之效能比較27
第四章 實驗設計與實驗結果28
4.1實驗平台28
4.2資料設計28
4.3實驗結果29
第五章 結論與未來研究方向37
5.1 研究貢獻37
5.2 研究限制37
5.3 後續研究建議38
參考文獻40
[1] 0Minos N. Garofalakis, Rajeev Rastogi, S.Seshadri, and Kyuseok Shim, "Data Mining and the Web: Past, Present and Future", Proceedings of the second international workshop on Web information and data management, 1999, Pages 43-47.
[2] Anupam Joshi and Karuna Joshi, "On Mining Web Access Logs", Technical Report, CSEE Department, UMBC, 1999.
[3] 0M. Carl Drott, "Using Web Server Logs to Improve Site Design", SIGDOC 1998, Pages 43-50.
[4] 0 Myra Spiliopoulou , "Web Usage Mining for Web Site Evaluation", Commun. ACM 43, 8(Aug. 2000), Pages 127-134.
[5] 0Cooley, R., Mobasher, B., Srivastava, J., "Web Mining: Information and Pattern Discovery on the World Wide Web", Proceedings of the Ninth IEEE International Conference on Tools with Artificial Intelligence 1997, Pages 558-567.
[6] 0Wang Jicheng, Huang Yuan, Wu Gangshan, Zhang Fuyan, "Web Mining: Knowledge Discovery On the Web", IEEE International Conference on Systems, Man, and Cybernetics, 1999. IEEE SMC ’99 Conference Proceedings. 1999, Volume: 2, 1999, Pages: 137-141.
[7] 0Jaideep Srivastava, Robert Cooley, Mukund Deshpande, Pang-Ning Tan, "Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data", SIGKDD Explorations,Vol. 1, Issue 2, 2000, Pages 12-23.
[8] 藎壚,實用模糊數學,亞東書局,一版,民國八十年十一月。
[9] Sadaaki Miyamoto, "An Overview and New Methods in Fuzzy Clustering", 1998. Proceedings KES ’98. 1998 Second International Conference on, Volume:1, 1998, Pages 33-40.
[10] Frigui, H., Krishnapuram, R., "A Robust Competitive Clustering Algorithm with Applications in Computer Vision", IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume: 21 Issue:5, May 1999, Pages 450-465.
[11] Charu C. Aggarwal, Philip S, "Finding Generalized Projected Clusters in High Dimensional Spaces", SIGMOD Conference 2000.
[12] Frank Hoppner, Frank Klawonn, Rudolf Kruse, Thomas Runkler, Fuzzy Cluster Analysis, WILEY, 1999.
[13] Fuzzy C-means Clustering algorithm, Bezdek J. C., Pattern
Recognition with Fuzzy Objective Function Algorithms, Plenum, New York, 1981.
[14] Katuna P. Joshi, Anupam Joshi, Yelena Yesha and Raghu Krishnapuram, "Warehousing and Mining Web logs", Proceedings of the second international workshop on Web information and data management, 1999, Pages 63-68.
[15] Osmar R Zaiane, Man Xin, Jiawei Han, "Discovering Web Access Patterns and Data Mining Technology on Web Logs", ADL 1998: Pages 19-29.
[16] Fong, J., Hughes, J.G., Jianhan Zhu, "Online Web Mining Transactions Association Rules using Frame Metadata Model", Proceedings of the First International Conference on Web Information Systems Engineering Volume: 2, 2000, Pages 121-129.
[17] Krishnapuram, R., Joshi, A.; and Liyu Yi, "A Fuzzy Relative of the k-Medoids Algorithm with Application to Web Document and Snippet Clustering", Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE ’99. 1999 IEEE International, Volume:3, 1999, Pages 1281-1286.
[18] Olfa Nasraoui, Raghu Krishnapuram, Anupam
Joshi,"Relational Clustering Based on a New Robust
Estimator with Application to Web Mining", Proc.Intl.Conf.
North American Fuzzy Info. Proc. Society(NAFIPS 99), New
York, June 1999.
[19] Yongjian Fu, Kanwalpreet Sandhu, Ming-Yi Shih, "Clustering of Web Users Based on Access Patterns", International Workshop on Web, International Workshop on Web Usage Analysis and User Profiling (WEBKDD’99), San Diego, CA, 1999.
[20] J. Cowie and W. Lehnert, "Information extraction", Communications of the ACM, 39,1 (Jan.1996), Pages 80-91.
[21] Nasraoui, O.; Krishnapuram, R., "A Robust Estimator Based on Density and Scale Optimization and its Application to Clustering", Fuzzy Systems, 1996., Proceedings of the Fifth IEEE International Conference on, Volume: 2, 1996, Pages 1031-1035.
[22] Chakrabarti, S., Tomkins, A., Gibson, D., and Kleinberg, J., "Mining the Web’s link structure", IEEE Computer, Pages 60-67.
[23] Raymond Kosala, Hendrik Blockeel, "Web Mining Research: A Survey", 2000 ACM SIGKDD Volume 2, Issue 1, July 2000, Pages 1-15.
[24] Olfa Nasraoui, Hichem Frigui, Anupam Joshi, Raghu Krishnapuram, "Mining Web Access Logs Using Relational Competitive Fuzzy Clustering", International Fuzzy Systems Association congresss, Taipei, Taiwan, August 1999.
[25] H. Kautz, B. Selman, and M.Shah, "The hidden web", AI magazine, 18(2) 1997, pages 27-36.
[26]Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques, Simon Fraser University,1999.
[27] Edith Cohen., Mayur Datar, Shinji Fujiwara.,Aristides Gionis., Piort Indyk., Rajeev Motwani.; Jeffrey D.Ullman., Cheng Yang., "Finding Interesting Associations without Support Pruning", Data Engineering, 2000. Proceedings. 16th International Conference on , 2000 Pages: 489 —500.
[28]R.Agrawal and R.Srikant, "Fast Algorithm for Mining Association Rules in Large Databases", In Proc. 1994 Int’l Conf. VLDB, pages 487-499, Santiago, Chile, Sep.1994
[29]A.Savasere, E.Omiecinski, and S. Navathe,"An Efficient Algorithm for Mining Association Rules in Large Database", Proc. 21th VLDB, pages 432-444, 1995.
[30]H. Toivonen, "Sampling Large Databases for Association Rules", VLDB, pages 134-145. 1996.
[31]D. Lin and Z.M. Kedem, "Pincer-Search:A New Algorithm for Discovering the Maximum Frequent Set",In Proc. VI Intl. Conf. On Extending Database Technology, 1998.
[32]王仁傑, "有效找出較長資料項目型樣的關聯法則之研究",逢甲大學資訊工程研究所碩士論文,pages 10-15, 1999.
[33] C.H. Cai, A.W. Fu, C.H. Cheng, W.W. Kwong, "Mining Association Rules with Weighted Items" In Proceedings of International Database Engineering and Applications Symposium (IDEAS 98), Aug 1998.
[34] Eui-Hong Han, George Karypis, Vipin Kumar, Bamshad Mobasher, "Clustering Based On Association Rule Hypergraphs" DMKD 1997.
[35]S.Chakrabarti, "Data mining for hypertext: A tutorial survey", ACM SIGKDD Explorations, 1(2):1-11,2000.
[36] 林志麟,吳寶鳳, "有效使用關聯法則機制之研究",第四屆兩岸中華文化與經營管理學術研討會論文集,pages C1-5,2000
[37] Mike Perkowitz, Oren Etzioni, "Adaptive Web Sites: Conceptual Cluster Mining", Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI''99), Stockholm, August. Morgan Kaufmann, 1999
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top