(3.238.186.43) 您好!臺灣時間:2021/02/25 02:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭文銘
研究生(外文):Wen-Ming Cheng
論文名稱:光纖彎曲損失線上動態測量之研究
論文名稱(外文):Study of An On-Line Fiber-Optic Bending Loss Measurement System
指導教授:曹士林曹士林引用關係
指導教授(外文):Shyh-Lin Tsao
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
中文關鍵詞:彎曲損失線上動態測量簡單化公式靈敏度彎曲角度
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光纖彎曲損失線上動態測量之研究
學生:鄭文銘 指導教授:曹士林博士
元智大學
電機工程研究所
摘要
在本篇論文中,我們提出了一種考慮了不同彎曲類型參數,分別包括:彎曲半徑、捲繞圈數、彎曲角度及波長的簡單化公式。在彎曲型光纖感測器的系統中,它可以用來作為光纖彎曲損失值、靈敏度的計算及最佳化參數的設計。以測量光纖彎曲損失為基礎,移動光纖為考量被完成的光纖彎曲損失線上量測系統。包括:光的收訊器及發射器、自由空間的光功率耦合裝置、光纖外部空間干擾、擾動裝置及電子電路。其中硬體機構的設計與考量為:自由空間的光功率耦合、光纖外部空間干擾、擾動裝置、機械振動及其他設備干擾源。電子電路負責導通我們的調變信號,濾除線上可能之電氣干擾源。為了避免複雜計算光纖彎曲損失,除了靜態參數考量外,增加了光纖移動速度、壓變程度參數的考慮。為了增加整個線上動態測量系統的訊號雜訊比(SNR),我們使用光調變的技術與加了折射率匹配膏於動態旋轉的光纖上,使系統能更穩定的被讀取信號。
這些研究的成果,對於能以既簡單又方便的方法計算光纖彎曲損失與彎曲型光纖感測系統效能的評估是有助益的;線上自動化偵測光纖彎曲損失,對於光纖品質檢驗的效能提升是非常有幫助的。

Study of An On-Line Fiber-Optic Bending Loss Measurement System
Student:Wen-Ming Cheng Advisor:Shyh-Lin Tsao
Department of Electrical Engineering
Yuan-Ze University
ABSTRACT
In this thesis, the authors have designed and analyzed a simplified formulation of bending loss for fiber sensor with considering various wrapping setups such as bending radius, wrapping turns, bending angle, and wavelength. These results are useful for evaluation of fiber-optic bending loss and finding optimum factors in fiber bending sensor system.
A completed moving fiber is on-line bending loss measurement system includes an optical transmitter, an optical receiver, free space optical power coupling devices, fiber-optic external spatial perturbation rollers, and electronic circuits.
A novel setup of moving fiber measurement system is completed with considering free space optical power coupling, external spatial perturbation, machine vibrations improvement and rejection interference noise. The electronic circuits passed our modulated signal and rejected any of noise. To avoid complicated calculation of fiber bending loss, the authors proposed a simplified theoretical model for on-line evaluation with considering moving fiber velocity, deformation, and some bending parameters. The signal to noise ratio of the whole system is improved with considering adding index-matching oil to the dynamic rotating fiber adaptor and applying the transmission light modulation techniques.
Using simplified formulation of bending loss for fiber sensor is a conventional proposal, and this measurement system can monitor fiber bending loss automatically, the efficiency of fiber quality checking can be enhanced.

Contents
Chinese Abstract ………………..………...…………………………...i
English Abstract ………………..……...………………………….…..ii
Acknowledgment ……………………………….…………………….iii
Contents .………...…………………………………….………..….…...iv
List of Figures ………………………………………………….….....viii
List of Tables …………………………………………….…………….xv
Chapter 1 Introduction ………………………………..……….1
Chapter 2 Simplified Formulation of Bending loss for Optical
Fiber Sensors ….…………..………………..……....8
2-1 Introduction……………………………….…………………………..8
2-2 Theoretical Model……………………………………………….……10
2-3. Simplified Semi-Empirical Formulation...……………………….….15
2-3-1 Experimental setup………..…….……………..……………...15
2-3-2 Bending radius consideration…………….………….………..16
2-3-3 Wrapping turns consideration.…..……………..……………...17
2-3-4 Bending angle consideration…………….……….……..……..19
2-3-5 Wavelength response of bending loss….……………………...21
2-3-6 The curves fitting of fiber-optic bending loss measurement for various variable setup……………………………....………..23
2-4 Discussions……………………...…………………………………….24
2-5 Conclusions…………………………………..……………………..26
Chapter 3 Implementation of A Fiber-Optic Bending Loss On-Line Measurement System….…………..…...43
3-1 Introduction…………………………………..…………………...…43
3-2 Experimental Setup of the On-Line Fiber-Optic Bending Loss Measurement………………………………………………………..45
3-3 The Free Space Rotating Fiber Adaptor and Coupling Loss.…………………………………….………………...………46
3-4 Theoretical Model of the Dynamic Fiber-Optic Bending Loss Measurement…………………………………………..…………..49
3-5 The Transmitter and Receiver Circuit………………………………...52
3-6 The SNR of the Dynamic Fiber-Optic Bending Loss Measurement System…………………………………………...…………………. 58
3-7 Discussions……………………..…………………………………….59
3-8 Conclusion……………………………………………………………60
Chapter 4 Impact Factors Analysis of An On-Line Fiber-Optic Bending Loss Measurement System………………………………………………...75
4-1 Introductions……..……………………..………………………...…..75
4-2 On-Line Fiber-Optic Bending Loss Measurement……………...…….77
4-3 Impact Factors………………………………………………………...80
4-4 Reduce the Impact Factors…………….……………………..……….81
4-4-1. Support Structure Considerations..………………………….…..81
4-4-2. Dynamic Fiber-Optic Bending Loss Measurement Device Consideration…..……………………………………………....81
4-4-3 Active Band-Pass Filter Consideration….………………….……82
4-4-4. Transmitter Power Fluctuation and Receiver Thermal Noise
(σth) and Shot Noise (σs)Consideration…………………….85
4-4-5. PID Movable Dancer Effect..………………………..………….86
4-5 The Other Equipment Effect On the On-Line Dynamic Fiber-Optic Bending Loss Measurement………………………………………....87
4-6. Comparison of On-Line and Off-Line Bending Loss Measurement...87
4-7.Conclusion……………………………………………………...…….89
Chapter 5 Conclusions.……………………………….…………….106
References …………………………………………………………….113
Publication Lists …………………………………………….…...….123

Reference
[1]D. Marcuse, “ Curvature Loss Formula for Optical Fibers”, J. Opt. Soc. Amer. vol. 66, p. 216-220, 1976.
[2]P. Dinev,” Fiber — Optic Voltage Sensor Using an Optical Lever “, IEE proceedings Optoelectronics , vol.144 , pp. 253 — 255, 1997.
[3]Todoroki, T. Hotanaka, H. Kobavashi, H. Nakamura, Y. Shimamura, “ Strain Measurement by Curved Optical Fiber Sensor “, Transactions of the Japan Society of Mechanical Engineers, Part C, vol.62, pp. 3710 — 3714, 1997.
[4]K Asawa, S. K. Yao, R. C. Streans, N. L. Mota, and J. W. Downs, “ High Sensitivity Strain Sensor for Measuring Structural Distortion “, Electron Lett., vol.18, pp. 362-364, 1982.
[5]F. Luo, J. Liu, N. Ma, T. F. Morse, “ A Fiber Optic Microbend Sensor for Distributed Sensing Application in the Structural Strain Monitoring “, Sensor and Actuators, vol. 75 , pp. 41-44,1999.
[6]D. Varshneya, W. L. Ghering, and J. W. Berthold, ” High-Temperature Fibre-Optic Microbend Sensor”, Proceedings of 3rd Optical fiber sensors conference, San Diego, pp.140, 1985.
[7]J. N. Fields, C. K. Asawa, O. G. Ramer, and M. K. Barnoski, “ Fiber Optic Pressure Sensor ”, J. Acoust. Soc. Am. Vol.67, pp. 816-818, 1980.
[8]J. N. Fields, and J. H. Cole, “ Fiber Microbend Acoustic Sensor “. Appl. Opt., vol. 19, pp. 3236 — 3267, 1980.
[9]S. Tomita, H. Tachino, and N. Kasahara, “ Water Sensor With Optical Fibre ”, J. Lightwave Technol., vol. 8, pp. 1892-1832, 1990.
[10]S. F. Knowles et al, “ Multiple Microbending Optical-Fibre Sensors for Measurement of Fuel Quantity in Air Craft Fuel Tanks “, Sensor and Actuators 68, pp. 320-323,1998.
[11]J. W. Berthold, W. L. Ghering, D. Varshneya, “ Design and Characterization of a High Temerature Fiber-Optic Pressure Transducer”, IEEE Journal of Light Technology, vol. 5, no. 7, pp.870-875, 1987.
[12]D. S. Czaplak, S. C. Rashleigh, H. F. Taylor, J. F. Weller, “ Microbend Fiber-Optic Phase Shifter “, Journal of Lightwave Technology, vol. LT-4, no. 1, pp.50-54, 1986.
[13]D. Marcuse, “ Theory of Dielectric Optical Waveguides “, Academic, New York, 1974.
[14]T. Pfeiffer, J. Kissing, J. P. Elbers, B. Deppisch, M. White, H. Schmuck, E. Voges, “ Coase WDM/CDM/TDM Concept for Optical Packet Transmission in Metropolitan and Access Networks Supporting 400 Channels at 2.5Gb/s Peak Rate “, Journal of Lightwave Technology, vol. 18, no. 12, pp. 1928-1938, 2001.
[15]D. Stoll, P. Leisching, H. Bock, A. Richter, “ Metropolitan DWDM : a Dynamically Configurable Ring for the Komnet Field Trial in Berlin “, IEEE Communications Magizine, vol. 39, no. 2, pp. 106-113, 2001.
[16]B. Nyman, “ WDM Components”, OFC conference. Short course notes, SC156, 2001
[17]D. Kettler, H. Kafka, D. Spears, “ Driving Fiber to The Home “, IEEE Communication Magazine, vol. 38, no. 11, pp. 106-110, 2000.
[18]EIA Std. FOTP-62, “ Optical Fiber Microbend Test Procedure”, EIA-455-62. Electronic Industries Association, Washington, DC. 1988.
[19]EIA Std. FOTP-68, “ Optical Fiber Microbend Test Procedure”, EIA-455-68. Electronic Industries Association, Washington, DC. 1989.
[20]M. A. Sirbu, D. P. Reed, “ An Optimal Investment Strategy Model for Fiber to The Home “, Subscriber Loop and Services, Proceeding ISSLS 88, International Symposium, pp.149-155, 1988.
[21]J. Yoshida, “ Low Cost Optical Module for Fiber-To-The-Home “, Lasers and Electro-Optics Society Annual Meeting, LEOS 96, IEEE, vol. 1, pp. 69-70, 1996.
[22]E. Harstead, “ System Requirements for Optical Components in the Local Loop “, Lasers and Electro-Optics Society Annual Meeting, LEOS 96, IEEE, vol. 1, pp. 7, 1996.
[23]H. Tanaka, N. Nakata, K. Okada, “ Cost-Effective Optical Module for Optical Access System “, IEEE Photonics Technology Letters, vol.10, pp.436-438, 1998.
[24]J. harris, P. A. Shrubshall, and P. F. Castle, “ Wavelength Demultiplexing Using Bends in a Single-Mode Optical Fiber “, Journal of Lightwave Technology, vol. 6, no. 1, pp.80-86, 1988.
[25]T. Yoshino, K. Inoue, Y. Kobayashi, “ Spiral Fibre Microbend Sensors “, IEE, Proc. Optoelectron. vol. 144, no. 3, pp. 145-150, 1997.
[26]F. Luo, J. Liu, N. Ma, T. F. Morse, “ A Fiber Optic Microbend sensor for Distributed Sensing Application in the Structural Strain Monitoring “, Sensors and Actuators, vol.75, pp. 41-44, 1999.
[27]W. Synder, I. White, D. J. Mitchell, “ Radiation From Bent Optical Waveguides “, Electron. Lett., vol.15, no. 11, pp. 332-333, 1975.
[28]D. Marcuse, “ Microdeformation Losses of Single-Mode Fibers “, Applied Optics, vol. 23, no. 7, pp. 1082-1091, 1984.
[29]S. L. Jones, G. Murtaza, J. M. Senior, N. Haigh,“Single-Mode Optical Fiber Microbend Loss Modeling Using the Finite Difference Beam Propagation Method”, Optical fiber technology, vol.4, pp.471-479, 1998.
[30]J. A. Brosig, “ Spatial Frequency-Based Microbending Fiber Optic Sensor “, IEEE International Frequency Control Symposium, pp. 885-893, 1995.
[31]J. W. Berthold, W. L. Ghering, D. Varshneya, “ Design and Characterization of a High Temerature Fiber-Optic Pressure Transducer”, IEEE Journal of Light Technology, vol. 5, no. 7, pp.870-875, 1987.
[32]L. Faustini, G. Martini, “ Bend Loss in Single-Mode Fibers “, Journal of Lightwave Technology, vol. 15, no. 4, pp. 671-679, 1997.
[33]D. Marcuse, “ Theory of Dielectric Optical Waveguides “, Academic, New York, 1974.
[34]C. D. Chen, I. Kim, D. Mizura, T. V. Nguyen, K. Ogawa, R. E. Tench, L .D. Tzeng, P. D. Yeates, “ 1.2 Tbit /s (30ch × 40Gbit/s ) WDM transmission over 85 Km fiber “, Electronic Letters, 34, pp.1002 — 1004,1998.
[35]K. J. Park, S. K. Shin, Y. C. Chung, “Wavelength Monitoring Device for Use in Optical Fiber Sensors”, CLEO, Tuesday morning, pp.57, CTUA5, 1998.
[36]E. Udd and J. P. Theriault, “ Fiber-Optic Microbending Sensors Sensitive Over Different Bands of Wavelength of Light.” U.S. Pat. 5, 118, 931, 1992.
[37]Densmore, P. E. Jessop, "Wavelength Monitoring Devices for Use in Optical Fiber Sensors", Laser and Electro-Optics, 1998. CLEO 98. Technical Digest. Summaries of papers presented at the Conference on, pp.57, 1998.
[38]H.Y. Tam, M. S. Demokan, "In-Line Fiber-Optic Wavelength Meter for Sensing/Monitoring Applications", Lasers and Electro-Optics Europe, Conference, pp.372, 1994.
[39]K. Okamoto, K. Hattori, Y. Ohmori, "Fabrication of Multiwavelength Simultaneous Monitoring Devices Using Arrayed-Waveguide Grating", Electronics Letters, vol. 326, pp.569-570, 1996.
[40]W. Synder, I. White, and D. J. Mitchell, “ Radiation From Bent Optical Waveguides “, Electron. Lett. vol. 15, no. 11, pp. 332-333, 1975.
[41]J. harris, P. A. Shrubshall, and P. F. Castle, “ Wavelength Demultiplexing Using Bends in a Single-Mode Optical Fiber “, Journal of Lightwave Technology, vol. 6, no. 1, pp.80-86, 1988.
[42]H. Ranner, “ Bending Losses of Coated Single-Mode Fibers : A Simple Approach “, Journal of Lightwave Technology, vol. 10, no. 5, pp. 544-551, 1992.
[43]J. A. Brosig, “ Spatial Frequency-Based Microbending Fiber Optic sensor “, IEEE Internal Frequency Control Symposium, pp. 885-893, 1995.
[44]V. Aray, K. A. Murphy, A. Wang, R. O. Claus, “ Microbend Losses in Singlemode Optical Fibers : Theoretical and Experimental Investigation “, Journal of Lightwave Technology, vol. 13, no. 10, pp. 1998-2002, 1995.
[45]Shyh-Lin Tsao and Wen-Ming Cheng, " Tightly Bending Loss Measurement for 1.3μm and 1.5μm Broadband Wavelength Division Multiplying Fiber Sensor Systems " , Proceeding of SPIE Optical Sensing, Imaging and Manipulation for Biological And Biomedical Applications Conference, International optoelectronics Symposium on Photonics Taiwan, July 26-28, Taipei, Taiwan, Vol. 4082, pp.265-274, 2000.
[46]Shyh-Lin Tsao and Wen-Ming Cheng, “ An Optical Wavelength to Power Converter Using Fiber Spiral Bending Technique ”, Proceeding of IPC 2000 conference, December 12-15, Taiwan, vol. Th-T2-P009, pp.619-621, 2000.
[47]Walsin - Fujikura single mode optical fiber ( SM.10 / 125.04UV ) SPECIFICATION, Spec. No. : NWF — 98 F 101, Issue Date : Feb.25,1998.
[48]P. D. Lazay, A. D. Person, ” Developments in Single-Mode Fiber Design, Materials, and Performance at Bell Laboratories “, IEEE Trans. MTT-30, pp. 350-356, 1982.
[49]Garg, C. K. Eoll, ” Experimental Characterization of Bend and Microbend Losses in Single-Mode Finer Fibers ”Wire & Cable Sympos . Proceed 1986, P.P. 406-414, 1986.
[50]T. Yoshino, K. Inoue, Y. Kobayshi, and Y. Takahashi, “Spring coil fiber microbend sensor with well — defined characteristics ”, Proceedings of 11th Optical fiber sensors conference, Sapporo, pp. 264 — 267 , 1996 .
[51]J. J. Magera and B. P. McCann, “ Slica-Cove Fibers For Medical Diagnosis and Therapy “, proc. of optical fibers in medicine Ⅶ, 1649, pp. 2-7, 1992.
[52]L. A. Tempelman, J. P. Golden, G. P. Anderson, F. S. Ligler, “Use of Cyanine Dyes With Evanescent Wave Fiber Optic Biomedical Applications”, Droc. of Chemical, Biomedical, and Environmental Fiber SensorsⅥ, 2293, pp.139-148.
[53]T. Pfeiffer, J. Kissing, J. P. Elbers, B. Deppisch, M. White, H. Schmuck, E. Voges, “ Coase WDM/CDM/TDM Concept for Optical Packet Transmission in Metropolitan and Access Networks Supporting 400 Channels at 2.5Gb/s Peak Rate “, Journal of Lightwave Technology, vol. 18, no. 12, pp. 1928-1938, 2001.
[54]D. Stoll, P. Leisching, H. Bock, A. Richter, “ Metropolitan DWDM : a Dynamically Configurable Ring for the Komnet Field Trial in Berlin “, IEEE Communications Magizine, vol. 39, no. 2, pp. 106-113, 2001.
[55]K. Okada, O. Kawata, “ Optical Access Networks Toward FTTH in NTT “, 8th Internalnational Workshop on Optical/Hybrid Access Networks, Atlanta, USA, March 2-5, pp.8.8.1-8.8.7, 1997.
[56]T. Ericson, G. Palmskog, P. Eriksen, P. Lundstrom, M. Granberg, L. Backlin, K. Frojd, C. Vieider, “ Precision Passive Alignment Technologies for Low Cost Array FTTH Component “, Optical MEMS, 2000 IEEE/LEOS International Conference, pp. 115-116, 2000.
[57]D. Kettler, H. Kafka, D. Spears, “ Driving Fiber to The Home “, IEEE Communication Magazine, vol. 38, no. 11, pp. 106-110, 2000.
[58]S. Nemoto, T. Makimoto,”Analysis of splices loss in single-mode fibers using a Gaussian field approximation”, Optical and Quantum Electronics, 11, pp.447-457, 1979.
[59]V. Arya, K. A. Murphy, A. Wang, R. O. Claus, “ Microbend Losses in Singlemode Optical Fibers: Theoretical and Experimental Investigation”, Journal of Lightwave Technology, vol.13, no.10, pp.1998-2002, 1995.
[60]D. Gloge and E. A. J. Marcatili, ”Multimode Theory of Graded —Core Fibers”, Bell Syst. Tech. J. 52, pp.1563-1578, 1973.
[61]D. Marcuse, “Losses and Impulse Responses of a Parabolic Index Fibers with Random Bends”, Bell Syst. Tech. J. 52, pp.1423-1432, 1973.
[62]R. Olshansky, “ Propagation in Glass Optical Waveguides”, Rev. Mod. Phys. 51, pp.341-368,1979.
[63]L. Jeunhomme, J. P. Pocholle, “ Mode coupling in Multimode Optical Fiber with Microbends”, Appl. Opt. 14, pp. 2400-2405, 1975.
[64]Maxim Corporation, “ Micropower, Single-supply, Rail-to-rail, Precision Instrumentation Amplifier”, Maxim IC data sheet, Maxim4194-Max4197, pp.1-12, 1999.
[65]M. A. Sirbu, D. P. Reed, “ An Optimal Investment Strategy Model for Fiber to The Home “, Subscriber Loop and Services, Proceeding ISSLS 88, International Symposium, pp.149-155, 1988.
[66]J. Yoshida, “ Low Cost Optical Module for Fiber-To-The-Home “, Lasers and Electro-Optics Society Annual Meeting, LEOS 96, IEEE, vol. 1, pp. 69-70, 1996.
[67]E. Harstead, “ System Requirements for Optical Components in the Local Loop “, Lasers and Electro-Optics Society Annual Meeting, LEOS 96, IEEE, vol. 1, pp. 7, 1996.
[68]H. Tanaka, N. Nakata, K. Okada, “ Cost-Effective Optical Module for Optical Access System “, IEEE Photonics Technology Letters, vol.10, pp.436-438, 1998.
[69]F. H. Levinson, “ Monitoring Fiber Bend Loss Characteristics During Manufacture “, U.S. Pat. 4, 902, 327, 1990.
[70]H. Agawa, M. Nagata, and M. Araragi, “ A High Performance Optical Power Meter “, Instrument and Measurement Technology Conference, IMTC-91, pp.622-624, 1991.
[71]G. Keiser, “Optical Fiber Communications”, McGraw-Hill Book Co. third edition, chapter 13, p.p 533 —566, 2000.
[72]D. Derickson, “ Fiber Optic Test and Measurement “, Hewlett-Packard Proffessional Book, chapter 2, pp. 55-86, 1998.
[73]J. E. Goell, G. W. Bickel, C. K. Kao, M. S. Maklad, et al, “ Method For Using On Line Optic Fiber Loss Monitor”, U.S. Pat. 4, 081, 258, 1976
[74]D. E. Vokey, “ Fiber Optic Cable Monitoring Method and Appartus Including Moisture Detection and Bending Loss Detection “, U.S. Pat. 4, 902, 327, 1992.
[75]J. M. Senior, “ Optical Fiber Communication Principles and practice “, Prentice Hall International Series in Optoelectronics, Second Edition, chapter 9, pp.467-551, 1992.
[76]V. T. Chitnis, S. Kumar, D. Sen, “ Optical Fiber Sensor for Vibration Amplitude Measurement “, Journal of Lightwave Technology, vol.7, no. 4, pp. 687-691, 1989.
[77]P. J. Kajenski, P. L. Fuhr, D. R. Huston, “ Mode Coupling and Phase Modulation in Vibrating Waveguides “, Journal of Lightwave Technology,vol. 10, no. 9, pp.1297-1301, 1992.
[78]M. Kimara, K. Toshima, “ A New Type Optical Fiber Vibration-Sensor “, Solid State Sensor and Actuators, TRANSDUCERS’97, International Conference, vol. 2, pp. 1225-1228, 1997.
[79]P. Gambini, M. Puleo, E. Vezzoni, " Laser frequency stabilization for multichannel coherent systems", Optical Communication, (ECOC 88). Fourteenth European Conference , vol.1, pp.78 -81, 1988.
[80]H. Y. Tam, M. S. Demokan, "In-line fiber-optic wavelength meter for sensing/monitoring applications", Lasers and Electro-Optics Europe, Conference , pp. 372 -37, 1994
[81]K. J. Park, S. K. Shin, Y. C. Chung, "A simple monitoring technique for WDM networks", Optical Fiber Communication Conference, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99. Technical Digest , vol.4, pp.152 -154, 1999
Publication Lists
1.Shyh-Lin Tsao and Wen-Ming Cheng, " Tightly Bending Loss Measurement for 1.3μm and 1.5μm broadband wavelength Division Multiplying Fiber Sensor Systems " , Proceeding of SPIE Optical Sensing, Imaging and Manipulation for Biological And Biomedical Applications Conference, International optoelectronics Symposium on Photonics Taiwan, July 26-28, Taipei, Taiwan, Vol. 4082, pp.265-274, 2000.
2.Shyh-Lin Tsao and Wen-Ming Cheng, “ An Optical Wavelength to Power Converter Using Fiber Spiral Bending Technique ”, Proceeding of IPC 2000 conference, December 12-15, Taiwan, vol. Th-T2-P009, pp.619-621, 2000.
專利
專利名稱:光纖捲繞式波長-功率轉換器,中華民國專利送審中。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔