(3.235.11.178) 您好!臺灣時間:2021/03/07 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖元懋
研究生(外文):Liao Yuan-Mao
論文名稱:可適性模糊滑動控制器之設計與應用
論文名稱(外文):Adaptive Fuzzy Sliding-Mode Controller Design and Its Application
指導教授:林志民林志民引用關係
指導教授(外文):Lin Chih-Min
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:可適性模糊控制滑動控制
外文關鍵詞:adaptivefuzzysliding mode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
可適性模糊滑動控制器之設計與應用
研究生:廖元懋指導教授:林志民 教授
元智大學電機工程研究所
摘 要
當我們用傳統方法來設計控制器時,必須知道系統的數學模式。但是系統如果過於複雜或數學模式無法精確表達時,模糊控制是一個很好的設計方法。模糊邏輯控制器非常適合應用在多變數非線性系統含複雜且不易由傳統控制方法實現的控制器設計上。
本文提出「可適性模糊滑動控制器」的設計方法,利用模糊邏輯的觀念來改善傳統滑動控制器訊號切換的問題;同時利用滑動模式的方法來減少模糊規則的數目;本方法導出適應性法則來自動調整模糊規則的權值。
所提出的可適性模糊滑動控制器將應用到有路面狀態改變之單輸入單輸出防鎖死剎車系統,及有方向舵毀壞之多輸入多輸出飛行控制系統。模擬驗證結果顯示,系統的控制性能可以得到改善,並且具備了穩定性及強健性的特色。

Adaptive Fuzzy Sliding-mode Controller
Design and Its Application
Student:Yuan-Mao LiaoAdvisors:Professor Chih-Min Lin
Institute of Electrical Engineering
Yuan-Ze University
ABSTRACT
For traditional control system design, the mathematical model of the system must be known. For systems which are complex or difficult to model, fuzzy control is an efficient design technique. Fuzzy logic controller is very suitable for multi-input multi-output nonlinear systems with the controller which is complex and is not easy to realize by the classical design method.
An adaptive fuzzy sliding-mode controller design method was proposed in this thesis. The fuzzy logic method is applied to avoid the chattering control signal in conventional sliding-mode controller. The sliding-mode method is applied to reduce the number of fuzzy rules. And the adaptive law is derived to adjust the weightings of fuzzy rules.
The proposed adaptive fuzzy sliding-mode control design method has been applied to a single-input single-output antilock braking system with various road conditions and a multi-input multi-output flight control system with rudder damage case. Simulation results demonstrate that the system performance has been improved sufficiently and the stability and robustness properties are also possessed.

Contents
書名頁 i
論文口試委員審定書 ii
授權書 iii
中文摘要 iv
Abstract v
誌謝 vi
List of Contents vii
List of Figures ix
Nomenclature x
1. Introduction 1
1.1 General Remark and Overview of Previous Work1
1.2 Motivation and Contribution 2
1.3 Scope and Organization of the Thesis 3
2. Adaptive Fuzzy Sliding-mode Controller Design4
2.1 Basic Structure of Fuzzy Logic Control Systems4
2.2 Basic of Sliding-Mode Control System 6
2.3 Fuzzy Sliding-Mode Control System 7
2.4 Adaptive Fuzzy Sliding-Mode Controller Design8
2.5 Summary 16
3. AFSMC Design for Antilock Braking System 17
3.1 Overview 17
3.2 Problem Formulation 17
3.3 Sliding-Mode Controller Design 20
3.4 Adaptive Fuzzy Sliding-Mode Controller Design22
3.5 Simulation Results 24
3.6 Summary 26
4. AFSMC Design for MIMO Flight Control System37
4.1 Overview 37
4.2 Problem Formulation 38
4.3 Sliding-Mode Controller Design 41
4.4 Adaptive Fuzzy Sliding-Mode Controller Design43
4.5 Simulation Result 44
4.6 Summary 45
5. Conclusions and Suggestions for Future Study54
5.1 Conclusions 54
5.2 Suggestions for Future Study 54
References 56

References
[1]L. A. Zadeh, “Fuzzy Sets”, Information and Controls, pp. 338-353, 1965.
[2]L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning”, Information Science, vol. 8, pp. 199-249, 1975.
[3]G. J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty, and Information. NJ:Pretice Hall, 1988.
[4]E. H. Mamdani, “Application of fuzzy logic to approximate reasoning using linguistic synthesis”, IEEE Trans. On Computer, pt. C, vol. 26, no. 12, pp. 1182-1191.
[5]M. Sugeno, Ed. Industrial applications of fuzzy control. Amsterdam: Elsevier Science, 1985.
[6]R. Palm. “Robust control by fuzzy sliding mode”, Automatica, vol. 30, pp. 1429-1437, 1994.
[7]S. W. Kim, and J.J. Lee, “Design of a fuzzy controller with fuzzy sliding surface”, Fuzzy Sets and System, 1995, vol. 71, pp. 359-369.
[8]X. Yu, Z. Man, and B. Wu, “Design of fuzzy sliding-mode control systems”, Fuzzy Sets and System, 1998, vol. 95, pp. 295-306.
[9]B. J. Choi, S. W. Kwak, and B. K. Kim, “Design of a single-input fuzzy logic controller and its properties”, Fuzzy Sets and System, vol. 106, pp. 299-308, 1999.
[10] Marc Bodson, and Joseph E. Groszkiewicz, “Multivariable adaptive algorithms for reconfigurable flight control”, IEEE Trans on Control systems Technology, vol 5, no. 2, pp. 217-229, 1997.
[11] Li Xin Wang, “Stable adaptive fuzzy control of nonlinear systems”, IEEE Trans. on Fuzzy System, vol. 1, no. 2, pp.146-155, 1993.
[12] A. Trebi-Ollennu, and B.A. White, “Robust output tracking for mimo nonlinear systems: an adaptive fuzzy systems approach”, IEE Proc., Control Theory Appl, vol 144, no. 6, pp. 537-544, 1997.
[13] L. X. Wang, “Stable adaptive fuzzy control of nonlinear systems”, IEEE Trans. on Fuzzy System, 1993, vol. 1, pp. 146-155.
[14] S.W. Kim, Y. Cho, and M. Park, “A multi-rule base controller using the robust property of a fuzzy controller and its design method”, IEEE Trans. on Fuzzy System, vol. 4, no. 3, pp. 315-327, 1996.
[15] H. Lee and M. Tomizuka, “Robust adaptive control using a universal approximator for SISO nonlinear systems”, IEEE Trans. on Fuzzy System, vol. 8, no. 1, pp. 95-106, 2000.
[16] F.C. Sun, Z. Q. Sun, and G. Feng, “An adaptive fuzzy controller based on sliding mode for robot manipulators”, IEEE Trans. on System Man and Cybernetics: Part B: Cybernetics, vol. 29, no. 4, pp. 661-667, 1999.
[17] F. J. Lin, and S. L. Chiu, “Adaptive fuzzy sliding mode control for PM synchronous servo motor drives”, IEE Proc., Control. Theory Appl. Vol. 145, no. 1, pp. 63-72. 1998.
[18] byungkook Yoo, and Woonchul Ham, “Adaptive fuzzy sliding mode control of nonlinear system”, IEEE Trans. On Fuzzy System, vol. 6, no. 2, pp. 315-321. 1998.
[19] H. S. Tan, and M Traction, “Discrete-time controller design for robust vehicle traction”, IEEE Control System Magazine, vol. 10, pp. 107-113, 1990.
[20] H. S. Tan, and Y. K. Chin, “Vehicle antilock braking and traction control: a theoretical study”, International Journal of System Science, vol. 23, pp. 351-365, 1992.
[21] J. R. Layne, K. M. Passino, and S. Yurkovich, “Fuzzy learning control for antiskid braking systems”, IEEE Trans. on Control Systems Technology, vol. 1, pp. 122-129. 1993.
[22] G. F. Mauer, “A fuzzy logic controller for an ABS braking system”, IEEE Trans. on Fuzzy Systems, vol. 3, pp.381-388. 1995.
[23] J. Harned, L. Johnston, and G. Scharpf, “Measurement of tire brake force characteristics as related to wheel slip(antilock) control system design”, SAE paper 690214, 1986.
[24] Dohyeon Kim, and Youdan Kim, “Robust variable structure controller design for fault tolerant flight control”, Journal of Guidance Control and Dynamics, vol. 23, no. 3, pp.430-437. 2000.
[25] Elbrous M. Jafarov, and Ramazan Tasaltin, “Design of longitudinal variable structure flight control system for the f-18 aircraft model with parameter perturbations”, The 1999 IEEE International Symposium on Computer Aided Control System Design, Hawai USA, pp.607-612. 1999.
[26] Elbrous M. Jafarov, and Ramazan Tasaltin, “Roubust sliding-mode control for the uncertain MIMO aircraft model F-18”, IEEE Trans. on Aerospace and Electronic Systems, vol. 36, no. 4, pp. 1127-1141. 2000.
[27] Sahjendra N. Singh, Marc Steinberg, and Robert D. Digirolamo, “Variable structure robust flight control system for the F-14”, IEEE Trans. On Aerospace and Electronic Systems, vol. 33, no.1, pp.77-84. 1997.
[28] Zhiqiang Zhou, and Ching-Fang Lin, “Fuzzy logic based flight control system for hypersonic transporter”, The 36th Conference on Decision and Control San Diego, California USA. pp. 2730-2735. 1997.
[29] Rolf T. Rysdyk, and Anthony J. Calise, “Adaptive Model Inversion Flight Control for Tilt-Rotor Aircraft”, Journal of Guidance, Control, and Dynamics, vol. 22, no. 3, pp. 402-407, 1999
[30] Byoung S. Kim, and Anthony J. Calise, “Nonlinear Flight Control Using Neural Networks”, Journal of Guidance, Control, and Dynamics, vol. 20, no. 1, pp. 26-33, 1997.
[31] Jovan D. Boskovic, and Raman K. Mehra, “Intelligent Adaptive Control of a Tailless Advanced Fighter Aircraft Under Wing Damage”, Journal of Guidance, Control, and Dynamics, vol. 23, no. 5, pp. 876-884, 2000.
[32] Youmin Zhang, and Jin Jiang, “Integrated Design of Reconfigurable Fault-Tolerant Control Systems”, Journal of Guidance Engineering Notes, vol. 24, no. 1, pp. 133-136, 2000.
[33] K. F. Man, K. S. Tang and S. K. Wong, “Genetic Algorithms: Concepts and Applications”, IEEE Trans. on Industrial Electronics, vol. 43, no. 5, pp. 510-533, 1996.
[34] Y. Li, K.C. Ng, D.J. Murry-Smith, G.J. Gray and K. Sharman, ” Genetic algorithm automated approach to the design of sliding mode control system”, International Journal of Control, vol. 63, no. 4, pp. 721-739, 1996.
[35] Y.S. Lu and J.S. Chen, ”A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems”, IEEE Trans. on Industrial Electronics, vol. 41, pp. 492-502, 1994.
[36] S.C. Lin and Y.Y. Chen, “On GA-based optimal fuzzy control”, IEEE Int. Conf. on Evolutionary Computation, vol. 2, pp. 846-851, 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔