# 臺灣博碩士論文加值系統

(44.210.99.209) 您好！臺灣時間：2024/04/14 16:18

:::

### 詳目顯示

:

• 被引用:0
• 點閱:195
• 評分:
• 下載:0
• 書目收藏:0
 可適性模糊滑動控制器之設計與應用 研究生：廖元懋指導教授：林志民 教授 元智大學電機工程研究所 摘 要 當我們用傳統方法來設計控制器時，必須知道系統的數學模式。但是系統如果過於複雜或數學模式無法精確表達時，模糊控制是一個很好的設計方法。模糊邏輯控制器非常適合應用在多變數非線性系統含複雜且不易由傳統控制方法實現的控制器設計上。 本文提出「可適性模糊滑動控制器」的設計方法，利用模糊邏輯的觀念來改善傳統滑動控制器訊號切換的問題；同時利用滑動模式的方法來減少模糊規則的數目；本方法導出適應性法則來自動調整模糊規則的權值。 所提出的可適性模糊滑動控制器將應用到有路面狀態改變之單輸入單輸出防鎖死剎車系統，及有方向舵毀壞之多輸入多輸出飛行控制系統。模擬驗證結果顯示，系統的控制性能可以得到改善，並且具備了穩定性及強健性的特色。
 Adaptive Fuzzy Sliding-mode Controller Design and Its Application Student：Yuan-Mao LiaoAdvisors：Professor Chih-Min Lin Institute of Electrical Engineering Yuan-Ze University ABSTRACT For traditional control system design, the mathematical model of the system must be known. For systems which are complex or difficult to model, fuzzy control is an efficient design technique. Fuzzy logic controller is very suitable for multi-input multi-output nonlinear systems with the controller which is complex and is not easy to realize by the classical design method. An adaptive fuzzy sliding-mode controller design method was proposed in this thesis. The fuzzy logic method is applied to avoid the chattering control signal in conventional sliding-mode controller. The sliding-mode method is applied to reduce the number of fuzzy rules. And the adaptive law is derived to adjust the weightings of fuzzy rules. The proposed adaptive fuzzy sliding-mode control design method has been applied to a single-input single-output antilock braking system with various road conditions and a multi-input multi-output flight control system with rudder damage case. Simulation results demonstrate that the system performance has been improved sufficiently and the stability and robustness properties are also possessed.
 Contents 書名頁 i 論文口試委員審定書 ii 授權書 iii 中文摘要 iv Abstract v 誌謝 vi List of Contents vii List of Figures ix Nomenclature x 1. Introduction 1 1.1 General Remark and Overview of Previous Work1 1.2 Motivation and Contribution 2 1.3 Scope and Organization of the Thesis 3 2. Adaptive Fuzzy Sliding-mode Controller Design4 2.1 Basic Structure of Fuzzy Logic Control Systems4 2.2 Basic of Sliding-Mode Control System 6 2.3 Fuzzy Sliding-Mode Control System 7 2.4 Adaptive Fuzzy Sliding-Mode Controller Design8 2.5 Summary 16 3. AFSMC Design for Antilock Braking System 17 3.1 Overview 17 3.2 Problem Formulation 17 3.3 Sliding-Mode Controller Design 20 3.4 Adaptive Fuzzy Sliding-Mode Controller Design22 3.5 Simulation Results 24 3.6 Summary 26 4. AFSMC Design for MIMO Flight Control System37 4.1 Overview 37 4.2 Problem Formulation 38 4.3 Sliding-Mode Controller Design 41 4.4 Adaptive Fuzzy Sliding-Mode Controller Design43 4.5 Simulation Result 44 4.6 Summary 45 5. Conclusions and Suggestions for Future Study54 5.1 Conclusions 54 5.2 Suggestions for Future Study 54 References 56
 References[1]L. A. Zadeh, “Fuzzy Sets”, Information and Controls, pp. 338-353, 1965.[2]L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning”, Information Science, vol. 8, pp. 199-249, 1975.[3]G. J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty, and Information. NJ:Pretice Hall, 1988.[4]E. H. Mamdani, “Application of fuzzy logic to approximate reasoning using linguistic synthesis”, IEEE Trans. On Computer, pt. C, vol. 26, no. 12, pp. 1182-1191.[5]M. Sugeno, Ed. Industrial applications of fuzzy control. Amsterdam: Elsevier Science, 1985.[6]R. Palm. “Robust control by fuzzy sliding mode”, Automatica, vol. 30, pp. 1429-1437, 1994.[7]S. W. Kim, and J.J. Lee, “Design of a fuzzy controller with fuzzy sliding surface”, Fuzzy Sets and System, 1995, vol. 71, pp. 359-369.[8]X. Yu, Z. Man, and B. Wu, “Design of fuzzy sliding-mode control systems”, Fuzzy Sets and System, 1998, vol. 95, pp. 295-306.[9]B. J. Choi, S. W. Kwak, and B. K. Kim, “Design of a single-input fuzzy logic controller and its properties”, Fuzzy Sets and System, vol. 106, pp. 299-308, 1999.[10] Marc Bodson, and Joseph E. Groszkiewicz, “Multivariable adaptive algorithms for reconfigurable flight control”, IEEE Trans on Control systems Technology, vol 5, no. 2, pp. 217-229, 1997.[11] Li Xin Wang, “Stable adaptive fuzzy control of nonlinear systems”, IEEE Trans. on Fuzzy System, vol. 1, no. 2, pp.146-155, 1993.[12] A. Trebi-Ollennu, and B.A. White, “Robust output tracking for mimo nonlinear systems: an adaptive fuzzy systems approach”, IEE Proc., Control Theory Appl, vol 144, no. 6, pp. 537-544, 1997.[13] L. X. Wang, “Stable adaptive fuzzy control of nonlinear systems”, IEEE Trans. on Fuzzy System, 1993, vol. 1, pp. 146-155.[14] S.W. Kim, Y. Cho, and M. Park, “A multi-rule base controller using the robust property of a fuzzy controller and its design method”, IEEE Trans. on Fuzzy System, vol. 4, no. 3, pp. 315-327, 1996.[15] H. Lee and M. Tomizuka, “Robust adaptive control using a universal approximator for SISO nonlinear systems”, IEEE Trans. on Fuzzy System, vol. 8, no. 1, pp. 95-106, 2000.[16] F.C. Sun, Z. Q. Sun, and G. Feng, “An adaptive fuzzy controller based on sliding mode for robot manipulators”, IEEE Trans. on System Man and Cybernetics: Part B: Cybernetics, vol. 29, no. 4, pp. 661-667, 1999.[17] F. J. Lin, and S. L. Chiu, “Adaptive fuzzy sliding mode control for PM synchronous servo motor drives”, IEE Proc., Control. Theory Appl. Vol. 145, no. 1, pp. 63-72. 1998.[18] byungkook Yoo, and Woonchul Ham, “Adaptive fuzzy sliding mode control of nonlinear system”, IEEE Trans. On Fuzzy System, vol. 6, no. 2, pp. 315-321. 1998.[19] H. S. Tan, and M Traction, “Discrete-time controller design for robust vehicle traction”, IEEE Control System Magazine, vol. 10, pp. 107-113, 1990.[20] H. S. Tan, and Y. K. Chin, “Vehicle antilock braking and traction control: a theoretical study”, International Journal of System Science, vol. 23, pp. 351-365, 1992.[21] J. R. Layne, K. M. Passino, and S. Yurkovich, “Fuzzy learning control for antiskid braking systems”, IEEE Trans. on Control Systems Technology, vol. 1, pp. 122-129. 1993.[22] G. F. Mauer, “A fuzzy logic controller for an ABS braking system”, IEEE Trans. on Fuzzy Systems, vol. 3, pp.381-388. 1995.[23] J. Harned, L. Johnston, and G. Scharpf, “Measurement of tire brake force characteristics as related to wheel slip(antilock) control system design”, SAE paper 690214, 1986.[24] Dohyeon Kim, and Youdan Kim, “Robust variable structure controller design for fault tolerant flight control”, Journal of Guidance Control and Dynamics, vol. 23, no. 3, pp.430-437. 2000.[25] Elbrous M. Jafarov, and Ramazan Tasaltin, “Design of longitudinal variable structure flight control system for the f-18 aircraft model with parameter perturbations”, The 1999 IEEE International Symposium on Computer Aided Control System Design, Hawai USA, pp.607-612. 1999.[26] Elbrous M. Jafarov, and Ramazan Tasaltin, “Roubust sliding-mode control for the uncertain MIMO aircraft model F-18”, IEEE Trans. on Aerospace and Electronic Systems, vol. 36, no. 4, pp. 1127-1141. 2000.[27] Sahjendra N. Singh, Marc Steinberg, and Robert D. Digirolamo, “Variable structure robust flight control system for the F-14”, IEEE Trans. On Aerospace and Electronic Systems, vol. 33, no.1, pp.77-84. 1997.[28] Zhiqiang Zhou, and Ching-Fang Lin, “Fuzzy logic based flight control system for hypersonic transporter”, The 36th Conference on Decision and Control San Diego, California USA. pp. 2730-2735. 1997.[29] Rolf T. Rysdyk, and Anthony J. Calise, “Adaptive Model Inversion Flight Control for Tilt-Rotor Aircraft”, Journal of Guidance, Control, and Dynamics, vol. 22, no. 3, pp. 402-407, 1999[30] Byoung S. Kim, and Anthony J. Calise, “Nonlinear Flight Control Using Neural Networks”, Journal of Guidance, Control, and Dynamics, vol. 20, no. 1, pp. 26-33, 1997.[31] Jovan D. Boskovic, and Raman K. Mehra, “Intelligent Adaptive Control of a Tailless Advanced Fighter Aircraft Under Wing Damage”, Journal of Guidance, Control, and Dynamics, vol. 23, no. 5, pp. 876-884, 2000.[32] Youmin Zhang, and Jin Jiang, “Integrated Design of Reconfigurable Fault-Tolerant Control Systems”, Journal of Guidance Engineering Notes, vol. 24, no. 1, pp. 133-136, 2000.[33] K. F. Man, K. S. Tang and S. K. Wong, “Genetic Algorithms: Concepts and Applications”, IEEE Trans. on Industrial Electronics, vol. 43, no. 5, pp. 510-533, 1996.[34] Y. Li, K.C. Ng, D.J. Murry-Smith, G.J. Gray and K. Sharman, ” Genetic algorithm automated approach to the design of sliding mode control system”, International Journal of Control, vol. 63, no. 4, pp. 721-739, 1996.[35] Y.S. Lu and J.S. Chen, ”A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems”, IEEE Trans. on Industrial Electronics, vol. 41, pp. 492-502, 1994.[36] S.C. Lin and Y.Y. Chen, “On GA-based optimal fuzzy control”, IEEE Int. Conf. on Evolutionary Computation, vol. 2, pp. 846-851, 1995.
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 應用模糊滑動模式法則於光碟測試機的高精度聚焦/循軌控制 2 應用以類神經網路為結構之滑動模式模糊控制器於液壓缸驅動力控制之研究 3 以可適性模糊系統補償高功率放大器之非線性效應 4 交通路網之適應模糊代理人控制系統 5 模糊滑動模式應用於磁浮平台之研究 6 模糊滑動模式控制器之研究及於感應電動機位置控制之應用 7 機器人手臂機構應用分析與強健控制系統設計之研究 8 模糊滑動補償控制器設計 9 適用於時延系統之模糊控制器 10 SMAW焊接系統的動態與控制 11 適應性模糊滑動模式控制 12 以模糊可適性網路實現數位波束形成 13 不確定性互連系統之變結構控制設計 14 考慮滑動之單球驅動機器人建模與TS模糊及適應模糊控制 15 連續時間的韌性模糊適應控制

 1 84.倪安順（1993），我國國際港埠營運績效與評比制度之建立，航運季刊，十四卷四期。 2 91.鄧振源、曾國雄（1989），層級分析法（AHP）的內涵特性與應用（上）、（下），中國統計學報，第27卷第6、7期。 3 94.盧展猷（1992），「港埠之策略性規劃」，交通建設41卷5期。

 1 自主式水下載具之積分滑動控制 2 飽和函數及超越正切函數之類比電路硬體實現 3 線性與非線性系統之參數空間分析 4 機器手臂之變結構控制設計 5 非線性控制之線型感應馬達驅動系統 6 應用小波類神經網路於旋轉型感應馬達位置控制 7 以基頻預先補償實現2.4GHzCCK編碼調變之高線性發射機 8 本地式感測器故障偵測 9 軟體無線電架構下之多通道多階數位升/降頻器設計與實現 10 以軟體無線電架構下實現GMSK收發機 11 藍芽通訊協議之射頻通訊埠的研究與實現 12 藍芽通訊協議之電話控制協議規格二進制的研究與實現 13 藍芽通訊協議之邏輯連結控制與適應層協定(L2CAP)的研究與實現 14 LMDS系統陣列天線波束指向誤差自動修正機制設計 15 等寬波束陣列天線行動通訊系統定位服務機制設計

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室