(3.235.11.178) 您好!臺灣時間:2021/03/07 08:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂孜斌
研究生(外文):Lu Tzu Ping
論文名稱:商業化發電系統應用於沼氣,裂解油,氣化燃氣之調控,測試及效益研究
論文名稱(外文):Modulation, Test&Economic Evaluation Study for Power Generation of Bio-gas, Pyntheric Fule &Gasification Synthetic Gas by Commerical Power System
指導教授:蘇艾蘇艾引用關係
指導教授(外文):Ai Su
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:80
中文關鍵詞:二氧化碳甲烷一氧化物碳氫化合物廢棄物變能源微生物法氧化鐵法碳酸鉀法
外文關鍵詞:CO2CH4COHCOWaste to energyMicrobial OxidationIron SpongerBenfield
相關次數:
  • 被引用被引用:6
  • 點閱點閱:571
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:2
摘 要
本研究首先針對中熱值衍生燃料(沼氣)之淨化及改裝之發電系統調控進行研究,實驗顯示以水浴法去除H2S之效率可達40%,發電後以瓦斯進入引擎燃燒60秒可去除大部分殘留之H2S,延長引擎壽命應用上,規模必須夠大才有經濟效益,否則要有補助措施。本研究評估之宜興牧場(480M3/天)回收年限7.3年,桃園職訓中心污水處理廠則太小(120M3/天),沒有投資效益。
再者,高熱值衍生燃料(裂解油)雜質及含硫量高,亦是要過濾去除雜質,而若用改裝過之中熱值衍生燃料發電,發電相對效率達60%。發電應用無需補助措施便有顯著效益。本研究評估之台灣日金化學公司(100kg/hr廢輪胎粉處理),回收年限僅1.8年。
至於低熱值衍生燃料(氣化燃氣),除雜質去除技術有待開發外(本研究複合式去除系統效率僅達89.1%),因熱值及產量不穩定,最好利用暫存槽穩定後,且以瓦斯先啟動10分鐘平穩後再應用。以調配氣體模擬得知,若熱值高於1000kcal/M3才可能啟動,而最好大於1200 kcal/M3才有穩定操作之可能。而修改過之汽油引擎可一體適用高、中、低熱值之衍生燃料。經濟效益上,以本研究評估之巨暉公司(580kg/hr稻殼處理)為例,回收年限4.34年,效益不錯。
Abstract
First, the cleaning of bio-gas (median heating value) and test of refined piston engine for power generation were studied in this paper. The experimental datas reveral that the removal efficiency of H2S in bio-gas is about 40% by absorption of watertank. The most of residual H2S in the engine can be burned out by combustion of natual gas for 60 seconds after turning off the generator. Thus, the corrosion of engine can be prerented and the life time of engine can be lengthen. As for the application, the initial investment can be refunded after 7.3 year (RB) for Yi-Shin animal farm (bio-gas 480M3/day), but, waste-water treatment plant of Twa-Yun skill-for-jobtraining center. The economic evaluation reveals that the proper investment benefit (RB is 3 year) may be reached by large-scale application or by support of government.
Second, 60% power relative to the specific of the experimental power system can be generated by the same refined engine with pyrolysis syn-oil (high heating value), but, the residues in pyrolysis syn-oil results in high SOx emission in flue gas after power generation. As for the application, no any additional support is heeded for attainment of proper investment benefit (RB is 3 year). The initial investment can be refunded only after 1.8 year (RB) for 100kg/hr waste tire pyrolysis plant of Taiwan Zun-Jenn Chemical company by the economic evaluation in this paper.
Third, the stablization of the heating value & producing rate by temporal storage tank, and, the start-up of the same refined engine by natural gas for ten minutes are heeded due to the low heating value of gasification syn-gas. Then, the heating value were simulated by mixture of CH4 & H2. The experimental results reveal that the heating value of syn-gas must be above 900 kcal/M3 for the start-up of the power system. The steady operation of the power system may be achieved if the heating value of the syn-gas is above 1200 kcal/M3. It is proven that the different waste devived synthetic fuel can be applied for power generation with the same refined piston engine, and, modulation of the operation conditions. As for the application, the initial investment can be refunded after 4.34 year (RB) for 580 kg/hr rice-hull gasification plant of Jui-Fey company by the economic evaluation in this paper. Such result is acceptable by Jui-Fey Company for the investment in the neak future.
目 錄
頁次
目 錄……………………………………………………………….VI
表目錄VII
圖目錄……………………………………………………………….VIII
照片目錄…………………………………………………………….IX
中文摘要X
英文摘要XI
第一章 前言1
1.1 緣起1
1.2 國內外現況與問題3
1.3 動機8
第二章 文獻回顧10
2.1 淨化技術10
2.2 發電調控技術15
第三章 研究內容與方法18
3.1 研究目標與內容18
3.2 研究步驟與方法20
第四章 實驗設備與效益分析說明22
4.1 實驗設備22
4.2 效益分析25
第五章 結果與討論26
5.1 商業發電系統應用於中熱值衍生燃料(沼氣)之調控與測試26
5.2 高熱值衍生燃料(裂解油)替代傳統油品發電測試34
5.3 調控商業發電系統以因應低熱值衍生燃料
(氣化燃氣)之研究37
第六章 結論與建議42
參考文獻44
附件一 實驗用2kw發電機規範59
附件二 裂解油檢測報告(廠商提供)以及柴油、燃料油規範…...61
簡 歷……………………………………………………………..65
表目錄
表1.1 氣化利用與燃燒利用之比較7
表2.1 衍生燃料熱值與發電系統之調控關係16
表5.1 水浴去除H2S第一次試驗26
表5.2 水浴去除H2S第二次試驗26
表5.3 負載與引擎轉數關係表27
表5.4 瓦斯耗用量與時間關係28
表5.5 瓦斯對殘留H2S排除試驗29
表5.6 宜興養豬場沼氣發電經濟效益分析30
表5.7 桃園職訓中心污水處理廠沼氣發電效益分析33
表5.8 裂解油成份分析34
表5.9 裂解油及柴油發電比較35
表5.10 裂解油與柴油發電排放物分析35
表5.11 台灣日金公司裂解油發電效益分析36
表5.12 氣化燃氣雜質去除測試38
表5.13 氣化燃氣發電排放測試39
表5.14 巨暉公司稻殼氣化燃氣發電經濟效益分析40
圖目錄
圖4.1 沼氣測試實驗裝置22
圖4.2 氣化燃氣測試圖23
圖4.3 液氮冷凝器24
照片目錄
照片1 實驗用裂解氣化及淨化裝置47
照片2 氣化燃氣雜質冷凝實驗裝置48
照片3 實驗發電機及煙氣排放分析儀49
照片4 廢輪胎粉裂解前後(上:裂解前;下:裂解後)50
照片5 裂解油(上:本研究實驗;下:廠商提供裂解油)51
照片6 本研究實驗產出之裂解油(焦油及雜質多)52
照片7 台灣日金公司提供之裂解油(焦油及雜質少且已過濾)53
照片8 裂解油過濾網54
照片9 稻殼氣化前後(上:氣化前;下:氣化後)55
參考文獻
1.Sullivan, D. A., “Gas Turbine Combustor Analysis”, ASME. J. of Engineering for Power, PP. 610-618, 1975.
2.張寶誠、陳本柱、盛元生,”航空發動機試驗技術”,航空工業出版社,1989.
3.Kapat, J. S., Agrowal, A. K., and Yang, T., “Air Extrction in a Gas Turbine for Integration Gasification Combined Cycle (IGCC): Experiments and Analysis”, ASME J of Engineering for Gas Turbines and Power, Vol. 119, PP. 20-26, 1977.
4.陳夢萍等,”燃氣引擎汽電共生系統工程規劃設計(五)”,能源基金專案,1980.
5.工研院能資所,”廢棄物能源利用技術研究(二)”,能源基金計畫,1996.
6.Nakat, T., Sato, M., Niromiya, T., Yashine, T., and Yamada, M., “Effect of Proessure on combustion Characteristics in LBG-Fueled 1300℃-Class Gas Turbine”, ASME J of Engineering for Gas Turbines and Power, Vol. 116. PP 554-558, 1994.
7.Look, C. S., Corman, J. C., and Todd, D. M., “System Evaluation and LBTU Fuel combustion Studies for IGCC Power Generation”, ASME J of Engineering for Gas Turbines and Power, Vol. 117. PP 673-677, 1995.
8.Nakata, T., Sato, Mo, Ninomiya, J., and Hasegawa, T., “A Study on Low Nox Combustion in LBG-FUELED 1500℃-Class Gas Turbine”, ASME J of Engineering for Gas Turbines and Power, Vol. 118.PP 534-540, 1996.
9.Kelsall, G. J., Smith, M. A. and Cannon, M. F., “Low Emissions Combustor Development for and Industrial Gas Turbine to unilize LCV Fuel Gas”. ASME J of Engineering for Gas Turbines and Power, Vol. 117. PP 559-566, 1994.
10.Domeracki, W. F., Dowdy, T.E., and Bachovchin, D. M., “Topping Combustor stasus for Second-Geration Pressurized Fluidized Bed Cycle Application”, ASME J of Engineering for Gas Turbines and Power, Vol. 119. PP 27-33, 1997.
11.Fukue, J., Mandai, S. and Inada, M., “Development of Gas Turbine combustors for low BTU Gas”, appealing in Aerothermodynamics in Combustor, Springer-Verlag, 1991.
12.Larson, E. D., “Biomass-Gasifier/Gas Turbine Cogeneration in the Pulp and Paper Industry”, ASME J of Engineering for Gas Turbines and Power, Vol. 114. PP 665-675, 1992.
13.Anuradha Ganesh, Prem Dutt Grover and P. V. Ramachandra lyer, “Combustion and Gasification Characterisitics of Rice Husk”, Fuel. Vol71, Sugust, PP889-894, 1992.
14.Chomiak, J., Longwell, J. P. and Starofinm, A. F., “Combustion of Low Calorific Value Gases; Problems and Prospects”, Prog Energy Combustion Sci., Vol. 15 PP. 109-129, 1989.
15.Mellor, A. M., “Design of Modern Turbine Combustors”, Academic Press, 1990.
16.Estein, P. U. etc. “The Design and Development of Gas Turbine Combustors”, Northern Research and Engineering Corporation, 1980.
17.Lefebvre, A. H., “Gas Turbine Combustion”, hemispher Pubishing Corporation, 1983.
18.金如山,”航空燃氣輪機燃燒室”,宇航出版社,1988.
19.工研院能資所,”廢棄物能源利用技術開發(三)”,經濟部能源委員會計畫,1997.
20.賴勁麟立委質詢稿,”再生能源發展條例草案”,立法院報告,2001.
21.工研院能資所,”生質能技術開發(Ⅲ,Ⅳ)”, 經濟部能源委員會計畫,1999~2000.
22.工研院能資所,”再生能源技術開發(Ⅰ,Ⅱ)”, 經濟部能源委員會計畫,1999~2000.
23.徐冰燕,“中國生物質氣化技術研究現狀及發展的關鍵技術”,新能源,1995, 12, PP.14-18.
24.Steven C. Gebhard, Dingneng Wang, Ralph P. Overend. And Mark A. Paisley, “Catalytic Conditioning of Synthesis Gas Produced by Biomass Gasification”, PP307-313, Biomass and Bioenergy.
25.吳創之、徐冰燕,”瑞典生物質氣化研究現狀”,新能源,1993, 12, pp.2-6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔