跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/09 07:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林思齊
研究生(外文):Lin, Shi Chi
論文名稱:鎳基600合金之圓周向應力腐蝕裂縫成長速率研究
指導教授:丁大為
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:兵器系統工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2003
畢業學年度:90
語文別:中文
論文頁數:90
中文關鍵詞:鎳基600合金應力腐蝕裂縫成長速率
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是探討在大氣及腐蝕環境中,軸向負荷對英高鎳600TT合金管件上圓周向裂縫成長行為之影響,以作為蒸汽產生器熱交換管件壽命評估之依據。
研究結果發現;在大氣環境下,軸向固定負荷未造成英高鎳600TT合金管上之圓周向裂縫成長。動態極化曲線掃描顯示在低於1M硫代硫酸鈉濃度之溶液中並沒有明顯的鈍化區,但在1%硝酸溶液及40%和10%氫氧化鈉溶液中有明顯的鈍化區存在。在1M硫代硫酸鈉溶液及外加300mV電位之腐蝕環境中,經160小時裂縫並未成長。然在20%硝酸及外加5mA直流電流溶液中,裂縫成長速率隨軸向負荷之增加而增快,發生典型之沿晶應力腐蝕斷裂,且得到軸向負荷(P)與裂縫深度由0.2mm成長至0.4mm之時間(t0.4)之關係為 。在本研究之實驗條件下,應力強度因子約為9.6∼16.9Mpa*m1/2,裂縫成長速率為1.3∼4.4µm/hr.。

The objective of the study is to investigate crack growth behavior of Inconel 600TT alloy tubes with circumferential pre-cracks and under axial load in ambient and corrosive environment. The study results provide the prediction on the lifetime of Inconel 600TT alloy tubes.
Under constant axial load and non-corrosive environment, there was no circumferential crack growth observed in Inconel 600TT alloy tubes. At 25℃, scanning curves of potentiodynamic polarization measurement reveal passive region showed up in NaOH and HNO3 solution, instead of less than 1M Na2S2O4 solution. Crack growth did not happen in the corrosive conditions of 1M Na2S2O4 solution with 300mV potential. However, crack growth rate increased by axial load in the solution of 20% HNO3 and 5mA DC. Typical intergranular stress corrosion cracking (IGSCC) occurred in the relation of as crack grew from 0.2 mm to 0.4 mm in the depth. In the conditions of experiment, the stress intensive factor are from 9.6∼16.9Mpa*m1/2 and the crack growth rates are in the range from 1.3 to 4.4µm/hr.

誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表錄 viii
圖錄 ix
1. 緒論 1
1.1 前言 1
1.2 研究動機 6
1.3 研究方法 8
2. 文獻回顧 10
2.1 蒸汽產生器熱交換管的劣化肇因及機制 10
2.2 核三廠蒸汽產生器熱交換管之壓力及溫度分佈 11
2.3 殘留應力之估算 12
2.4 腐蝕因子 13
2.5 裂縫成長速率之量測 16
3. 實驗 19
3.1 實驗設計及準備 19
3.1.1試樣材料性質及設計 19
3.1.2拉伸強度測試 21
3.1.3試樣設計及尺寸 23
3.2 實驗系統組裝 23
3.2.1定負荷機台及校正 24
3.2.2往復式直流電量測系統 27
3.2.3腐蝕環境 29
3.3 實驗程序 31
3.3.1未加腐蝕環境之定負荷試驗 31
3.3.2極化曲線量測 32
3.3.3腐蝕環境下之定負荷試驗 32
4. 結果與討論 33
4.1 未加腐蝕環境之裂縫成長 33
4.2 適當的腐蝕環境 43
4.2.1硫代硫酸鈉的極化曲線 43
4.2.2硝酸的極化曲線 45
4.2.3氫氧化鈉的極化曲線 47
4.3 腐蝕環境下之定負荷試驗 50
4.3.1在1M硫代硫酸鈉中之定負荷試驗 50
4.3.2在20%硝酸中之定負荷試驗 53
4.4 軸向負荷對英高鎳600TT合金圓周向裂縫成長之影響 66
4.5 腐蝕環境對英高鎳600TT合金圓周向裂縫成長之影響 67
5. 結論與未來研究方向 69
5.1 結論 69
5.2 未來研究方向 70
參考文獻 72
附錄A 79
附錄B 80
附錄C 81
附錄D 82
自傳 83

書籍
[1] 陳布燦,蒸汽產生器,壓水式反應器系統介紹 下冊,台灣電力公司第三核能發電廠,第廿七章,民七十二件三月。
[2] 傅銀河,二次水處理及取樣,壓水式反應器系統介紹 下冊,台灣電力公司第三核能發電廠,第廿八章,民七十二件三月。
[3] 酈正能、何慶芝,工程斷裂力學,北京航空航天大學,第10-95頁,1993.
[4] 郁仁貽,實用理論電化學,徐氏基金會,台北,第262-287頁,1980
[5] 鮮祺振,電極動力學,徐氏基金會,台北,第51-59頁,1996
論文期刊
[6] 余明昇等,核三蒸汽產生器二次側應力腐蝕龜裂探討第一次進度報告,INER-T2639,核能研究所,桃園龍潭,民八十九。
[7] 工業技術研究院工業材料研究所,核三廠英高鎳合金組件調查及可能產生問題影響評估,民八十七年七月。
[8] 溫冬珍與陳蜀瓊, “核三廠蒸汽產生器淤泥化學成與型態鑑定探討,” INER-T2439,民八十七年。
[9] 黃金城、林文一、馬殷邦, “核三廠蒸汽產生器管子與端板擴管區殘留應力分析”,INER-T2621,核能研究所,桃園龍潭,民八十九。
[10] 張善欽、康龍全、余明昇, “蒸汽產生器內部管束與支撐板之接觸應力分析”,INER-T2672,核能研究所,桃園龍潭,民八十九。
[11] 洪煥仁,“進步型蒸汽產生器熱流分析程式研究,”博士論文,國立清華大學核子工程研究所,新竹,1992。
[12] 許明哲,鎳基600合金在硫代硫酸鈉溶液中之應力腐蝕裂縫生長研究,碩士論文,國立成功大學材料科學(工程)研究所,台南,1993。
[13] 吳宗峰,鎳基600合金之敏化及電化學再活化特性研究,博士論文,國立成功大學材料科學(工程)研究所,台南,2000。
[14] 劉茂能,英高鎳690熱處理後顯微結構分析,碩士論文,國立清華大學核子工程研究所,新竹,1987。
[15] 黃聰安,熱處理對英高鎳600在硫代硫酸鈉環境應力腐蝕斷裂的影響,碩士論文,國立清華大學核子工程研究所,新竹,1986。
[16] 余明昇等,核三廠蒸汽產生器二次側應力腐蝕龜裂探討,核能研究所對內報告,龍潭,民88。
[17] 林思齊、余明昇、王重章,鎳基600TT合金應力腐蝕裂縫起始與成長之研究,中華民國防蝕工程學會2002年論文發表會論文集,台灣台中,第570-578頁,2002。
[18] 邱耀平,蒸汽產生器應力報告之蒐集與彙整,對內報告,核能研究所,桃園龍潭,民八十八年。
Books
[19] Shah, V.N., MacDonald, P.E., Aging and Extension of Major Light Water Reactor Component, Chapter 8, Elsevier, 1993.
[20] Tada, H., The Stress Analysis of Cracks Handbook, 2nd Edition, Paris Productions, Missouri, p27.9, 1985.
[21] Reed-Hill, R. E., Physical Metallurgy Principles, 2nd Ed., 1973.
Journal and Reports
[22] U.S. Nuclear Regulatory Commission, “Regulatory Guide 1.121: Bases for Plugging Degraded PWR Steam Generator Tubes”, August 1976.
[23] U.S. Nuclear Regulatory Commission, “DRAFT Regulatory Guide DG-1074: Steam Generator Tubes Integrity”, December 1998.
[24] U.S. Nuclear Regulatory Commission, “Regulatory Guide 1.83: In-Service Inspection of Pressurized Water Reactor System Steam Generator Tubes”, July 1975.
[25] Diercks, D. R., Shack, W. J., Muscara, J., “Overview of Steam Generator Tube Degradation and Integrity Issues,” Nuclear Engineering and Design, Vol. 194, pp.19-30, 1999.
[26] Baum, A.J., et al, “Development of Improved PWR Secondary Water Chemistry Guidelines”, Proc. of 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Amelia Island, Florida, pp74-79, Aug 10-14, 1997.
[27] Hwang, S. S., et al, “The Mode of Stress Corrosion Cracking in Ni-Base Alloys in High Temperature Water Containing Lead,” Journal of Nuclear Materials, Vol. 275, pp.28-36, 1999.
[28] Bouvier, O., et al, “Nickel Alloy Stress Corrosion Cracking in Neutral and Lightly Alkaline Sulfate,” ibid.
[29] EPRI-NP-5017, “Crevice Corrosion of Support Alloys in The Secondary Environments of Nuclear Steam Generators: Supplemental Report,” final report, Electric Power Research Institute, 1987.
[30] ASTM G-49, “Practice for Preparation and Use of Direct Tension Stress Corrosion Test Specimens,” 03.02, 1999.
[31] Cubed, S., “MULTEQ: Equilibrium of an Electrolytic Solution with Vapor-Liquid Partitioning and Precipitation”, EPRI NP-5561-CCM, May 1989.
[32] Kowaka, M., et al, “Effect of Heat Treatment on The Susceptibility to Stress Corrosion Cracking of Alloy 600,” Nuclear Technology, Vol. 55, pp.394-404, Oct., 1981.
[33] J.J.Kai, C.H.Tsai, G.P.Yu, “The IGSCC, Sensitization, and Microstructure Study of Alloy 600 and 690,” Nuclear Engineering and Design, Vol.144, pp.449-457, July 1993.
[34] J.J.Kai, G.P.Yu, C.H.Tsai, M.N.Lia, and S.C.Yao, “The Effects of Heat Treatment on the Chromium Depletion, Precipitate Evolution, and Corrosion Resistance of Inconel Alloy 690,” Metallurgical Transactions A., Vol.20A, pp.2057-2067. (1989)
[35] EPRI-NP-5263, Production of Intergranular Attack on Alloy 600, Alloy 690, and Alloy 800 Tubing in Tube Sheet Crevices, Electric Power Research Institute, 1987.
[36] EPRI-NP-5017, Crevice Corrosion of Support Alloys in the Secondary Environments of Nuclear Steam Generators: Supplemental Report, Final Report, Electric Power Research Institute, 1987.
[37] EPRI-NP-5073, Caustic Concentration in Tube Support Plate Crevices of Steam Generators, Electric Power Research Institute, 1987.
[38] EPRI-NP-5012, Stress Corrosion Cracking Test of Expanded Steam Generator Tubes, Final Report, Electric Power Research Institute, 1987.
[39] Paine, J. P. N., et al, “Predicting Steam Generator Crevice Chemistry,” Proc. of the 5th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors American Nuclear Society, La Grange Park, IL, pp739-744, 1992.
[40] Millett, P., “Modeling Local Chemistry in PWR Steam Generator Crevices,” Proc. 24th Water Reactor Safety Information Meeting, NUREG/CP-0157, U.S. Regulatory Commission, Washington, DC, PP415-423, 1997.
[41] Stutzmann, A., Nordmann, F., “Hideout Return in EDF Units,” EPRI Workshop On Steam Generator Secondary Side IGA/SCC, Minnpolis, Oct. 1993.
[42] Berge, Ph., Donati, J. R., “Materials Requirements for Pressurized Water Reactor Steam Generator Tubing,” Nuclear Technology, Vol. 55, pp.88-104, Oct., 1981.
[43] Crum, J.R., “Stress Corrosion Cracking Testing of Inconel Alloys 600 and 690 Under High-Temperature Caustic Conditions,” Corrosion, Vol. 42, 6, pp368-372, 1986.
[44] S.C.Tsai, C.H.Tsai, G.P.Yu, “The Electrochemical Behavior and Stress Corrosion Cracking Susceptibility of Inconel 600 in Thiosulfate and Tetrathionate Solutions,” 1988 Annual Meeting of China Material Science and Engineering Society, Taiwan, ROC. April 1988.
[45] Hwang, S. S., et al, “The Mode of Stress Corrosion Cracking in Ni-Base Alloys in High Temperature Water Containing Lead,” Journal of Nuclear Materials, Vol. 275, pp.28-36, 1999.
[46] Kawamura, H., et al., “Role of Grain Boundary Characteristics in Caustic IGA/SCC Resistance of Thermally-Treated Alloy 690 and Shot-Peened Alloy 800”, Proc. of the 9th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems, pp601-608, 1999.
[47] ASTM B-163-93, “Standard Specification for Seamless Nickel and Nickel Alloy Condenser and Heat-Exchanger Tubes,” 03.02, 1999.
[48] ASTM G5-94, “Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements,” 03.02, 1999.
[49] SMC-026, High-Performance Alloys for Resistance to Aqueous Corrosion, Special Materials Co., 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top