書籍
[1] 陳布燦,蒸汽產生器,壓水式反應器系統介紹 下冊,台灣電力公司第三核能發電廠,第廿七章,民七十二件三月。
[2] 傅銀河,二次水處理及取樣,壓水式反應器系統介紹 下冊,台灣電力公司第三核能發電廠,第廿八章,民七十二件三月。
[3] 酈正能、何慶芝,工程斷裂力學,北京航空航天大學,第10-95頁,1993.
[4] 郁仁貽,實用理論電化學,徐氏基金會,台北,第262-287頁,1980
[5] 鮮祺振,電極動力學,徐氏基金會,台北,第51-59頁,1996
論文期刊
[6] 余明昇等,核三蒸汽產生器二次側應力腐蝕龜裂探討第一次進度報告,INER-T2639,核能研究所,桃園龍潭,民八十九。
[7] 工業技術研究院工業材料研究所,核三廠英高鎳合金組件調查及可能產生問題影響評估,民八十七年七月。
[8] 溫冬珍與陳蜀瓊, “核三廠蒸汽產生器淤泥化學成與型態鑑定探討,” INER-T2439,民八十七年。
[9] 黃金城、林文一、馬殷邦, “核三廠蒸汽產生器管子與端板擴管區殘留應力分析”,INER-T2621,核能研究所,桃園龍潭,民八十九。
[10] 張善欽、康龍全、余明昇, “蒸汽產生器內部管束與支撐板之接觸應力分析”,INER-T2672,核能研究所,桃園龍潭,民八十九。
[11] 洪煥仁,“進步型蒸汽產生器熱流分析程式研究,”博士論文,國立清華大學核子工程研究所,新竹,1992。[12] 許明哲,鎳基600合金在硫代硫酸鈉溶液中之應力腐蝕裂縫生長研究,碩士論文,國立成功大學材料科學(工程)研究所,台南,1993。[13] 吳宗峰,鎳基600合金之敏化及電化學再活化特性研究,博士論文,國立成功大學材料科學(工程)研究所,台南,2000。[14] 劉茂能,英高鎳690熱處理後顯微結構分析,碩士論文,國立清華大學核子工程研究所,新竹,1987。[15] 黃聰安,熱處理對英高鎳600在硫代硫酸鈉環境應力腐蝕斷裂的影響,碩士論文,國立清華大學核子工程研究所,新竹,1986。[16] 余明昇等,核三廠蒸汽產生器二次側應力腐蝕龜裂探討,核能研究所對內報告,龍潭,民88。
[17] 林思齊、余明昇、王重章,鎳基600TT合金應力腐蝕裂縫起始與成長之研究,中華民國防蝕工程學會2002年論文發表會論文集,台灣台中,第570-578頁,2002。[18] 邱耀平,蒸汽產生器應力報告之蒐集與彙整,對內報告,核能研究所,桃園龍潭,民八十八年。
Books
[19] Shah, V.N., MacDonald, P.E., Aging and Extension of Major Light Water Reactor Component, Chapter 8, Elsevier, 1993.
[20] Tada, H., The Stress Analysis of Cracks Handbook, 2nd Edition, Paris Productions, Missouri, p27.9, 1985.
[21] Reed-Hill, R. E., Physical Metallurgy Principles, 2nd Ed., 1973.
Journal and Reports
[22] U.S. Nuclear Regulatory Commission, “Regulatory Guide 1.121: Bases for Plugging Degraded PWR Steam Generator Tubes”, August 1976.
[23] U.S. Nuclear Regulatory Commission, “DRAFT Regulatory Guide DG-1074: Steam Generator Tubes Integrity”, December 1998.
[24] U.S. Nuclear Regulatory Commission, “Regulatory Guide 1.83: In-Service Inspection of Pressurized Water Reactor System Steam Generator Tubes”, July 1975.
[25] Diercks, D. R., Shack, W. J., Muscara, J., “Overview of Steam Generator Tube Degradation and Integrity Issues,” Nuclear Engineering and Design, Vol. 194, pp.19-30, 1999.
[26] Baum, A.J., et al, “Development of Improved PWR Secondary Water Chemistry Guidelines”, Proc. of 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Amelia Island, Florida, pp74-79, Aug 10-14, 1997.
[27] Hwang, S. S., et al, “The Mode of Stress Corrosion Cracking in Ni-Base Alloys in High Temperature Water Containing Lead,” Journal of Nuclear Materials, Vol. 275, pp.28-36, 1999.
[28] Bouvier, O., et al, “Nickel Alloy Stress Corrosion Cracking in Neutral and Lightly Alkaline Sulfate,” ibid.
[29] EPRI-NP-5017, “Crevice Corrosion of Support Alloys in The Secondary Environments of Nuclear Steam Generators: Supplemental Report,” final report, Electric Power Research Institute, 1987.
[30] ASTM G-49, “Practice for Preparation and Use of Direct Tension Stress Corrosion Test Specimens,” 03.02, 1999.
[31] Cubed, S., “MULTEQ: Equilibrium of an Electrolytic Solution with Vapor-Liquid Partitioning and Precipitation”, EPRI NP-5561-CCM, May 1989.
[32] Kowaka, M., et al, “Effect of Heat Treatment on The Susceptibility to Stress Corrosion Cracking of Alloy 600,” Nuclear Technology, Vol. 55, pp.394-404, Oct., 1981.
[33] J.J.Kai, C.H.Tsai, G.P.Yu, “The IGSCC, Sensitization, and Microstructure Study of Alloy 600 and 690,” Nuclear Engineering and Design, Vol.144, pp.449-457, July 1993.
[34] J.J.Kai, G.P.Yu, C.H.Tsai, M.N.Lia, and S.C.Yao, “The Effects of Heat Treatment on the Chromium Depletion, Precipitate Evolution, and Corrosion Resistance of Inconel Alloy 690,” Metallurgical Transactions A., Vol.20A, pp.2057-2067. (1989)
[35] EPRI-NP-5263, Production of Intergranular Attack on Alloy 600, Alloy 690, and Alloy 800 Tubing in Tube Sheet Crevices, Electric Power Research Institute, 1987.
[36] EPRI-NP-5017, Crevice Corrosion of Support Alloys in the Secondary Environments of Nuclear Steam Generators: Supplemental Report, Final Report, Electric Power Research Institute, 1987.
[37] EPRI-NP-5073, Caustic Concentration in Tube Support Plate Crevices of Steam Generators, Electric Power Research Institute, 1987.
[38] EPRI-NP-5012, Stress Corrosion Cracking Test of Expanded Steam Generator Tubes, Final Report, Electric Power Research Institute, 1987.
[39] Paine, J. P. N., et al, “Predicting Steam Generator Crevice Chemistry,” Proc. of the 5th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors American Nuclear Society, La Grange Park, IL, pp739-744, 1992.
[40] Millett, P., “Modeling Local Chemistry in PWR Steam Generator Crevices,” Proc. 24th Water Reactor Safety Information Meeting, NUREG/CP-0157, U.S. Regulatory Commission, Washington, DC, PP415-423, 1997.
[41] Stutzmann, A., Nordmann, F., “Hideout Return in EDF Units,” EPRI Workshop On Steam Generator Secondary Side IGA/SCC, Minnpolis, Oct. 1993.
[42] Berge, Ph., Donati, J. R., “Materials Requirements for Pressurized Water Reactor Steam Generator Tubing,” Nuclear Technology, Vol. 55, pp.88-104, Oct., 1981.
[43] Crum, J.R., “Stress Corrosion Cracking Testing of Inconel Alloys 600 and 690 Under High-Temperature Caustic Conditions,” Corrosion, Vol. 42, 6, pp368-372, 1986.
[44] S.C.Tsai, C.H.Tsai, G.P.Yu, “The Electrochemical Behavior and Stress Corrosion Cracking Susceptibility of Inconel 600 in Thiosulfate and Tetrathionate Solutions,” 1988 Annual Meeting of China Material Science and Engineering Society, Taiwan, ROC. April 1988.
[45] Hwang, S. S., et al, “The Mode of Stress Corrosion Cracking in Ni-Base Alloys in High Temperature Water Containing Lead,” Journal of Nuclear Materials, Vol. 275, pp.28-36, 1999.
[46] Kawamura, H., et al., “Role of Grain Boundary Characteristics in Caustic IGA/SCC Resistance of Thermally-Treated Alloy 690 and Shot-Peened Alloy 800”, Proc. of the 9th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems, pp601-608, 1999.
[47] ASTM B-163-93, “Standard Specification for Seamless Nickel and Nickel Alloy Condenser and Heat-Exchanger Tubes,” 03.02, 1999.
[48] ASTM G5-94, “Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements,” 03.02, 1999.
[49] SMC-026, High-Performance Alloys for Resistance to Aqueous Corrosion, Special Materials Co., 2000.