跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/25 17:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王國平
研究生(外文):Wang, G.P.
論文名稱:酸性含氟聚(矽氧烷-亞醯胺)共聚物及混成材料之特性研究
指導教授:洪耀勳洪耀勳引用關係張德全
學位類別:博士
校院名稱:國防大學中正理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:136
中文關鍵詞:聚(矽氧烷-亞醯胺)酸性高分子混成材料核磁共振光譜儀
外文關鍵詞:Sol-Gelpoly(amide-imide)solid state NMR CP/MAS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本論文主要是合成並探討酸性具氫鍵之含氟聚(矽氧烷-亞醯胺)共聚物及使用溶膠-凝膠(Sol-Gel)技術縮合反應產生的混成材料的性質。運用紅外線光譜(IR)檢測亞醯胺化(Imidization)及混成材料裡的四甲氧烷基矽甲烷(Tetramethoxysilane)縮合反應程度,另使用核磁共振光譜儀(13C-, 29Si-NMR CP/MAS)鑑定化學結構,並由量測共聚物氫核自旋-自旋緩解(Spinspin relaxation)時間和混成材料的矽核和氫核能量交換時間(The time constant for energy exchange between 1H and 29Si spin system; TSiH)、自旋擴散路徑(Spin-diffusion path length; L)與氫核自旋晶格緩解(Spinlattic relaxation) 時間探討分子的局部運動性。進而運用熱微差掃描卡計(Differential scanning calorimetry; DSC)和熱重損失分析儀(Thermogravimetric analysis; TGA)等儀器研究共聚物和混成物的熱安定性。我們發現含矽氧烷鏈段的共聚物(PSAI)在空氣條件下的活化能大於未改質的聚醯胺亞醯胺(PAI),這個結果顯示矽氧烷增加了聚醯胺亞醯胺的熱氧安定性,而且和PAI相比較PSAI具有較小的自旋-自旋緩解時間(T2)。這顯示增加1,3-Bis(3-amino-propyl) tetramethyldisiloxane (APrTMDS)鏈段,由於它易曲折的運動性,使得分子間的間距變小。供應分子和接受分子之間的電核轉移(Charge transfer)或是苯環的π-π電子的疊積(π-πAromatic stacking)應是造成混成物結構緊密的主要因素,使得混成物的分子鏈段變得較為聚集(Aggregated)。
The purposes of this thesis were to synthesize and characterize acidic hydrogen-bonded fluorinated poly(amide-imide) copolymers and their hybrids via the sol-gel technique. IR spectra were employed to evaluate the degree of imidization and TMOS polycondensation. 29Si- and 13C-NMR CP/MAS spectroscopy were also used to confirm the chemical structures of reaction products. Moreover, the dynamics on local mobility of the copolymers and hybrids were investigated by the spin-spin relaxation time (T2), the time constant for energy exchange between 1H and 29Si spin system (TSiH) and spin-diffusion path length (L) measurements. The glass transition temperatures and thermal stability of copolymers and hybrids were also investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). We found that the apparent activation energy (Ea) of copolymers with siloxane segment (PSAI) in air was higher than that of the unmodified polyamideimide (PAI). The result suggested that the disiloxane enhanced the stability of the polyamideimide. Furthermore, the smaller spin-spin relaxation time (T2) of the PSAI copolymers than that of the PAI revealed that the PSAI had more packed configuration structure with increasing 1,3-Bis(3-amino-propyl) tetramethyldisiloxane (APrTMDS) because of the flexible mobility of APrTMDS segment. The interactions of the charge transfer between donor and acceptor molecules or - aromatic stacking might be the dominant factors to affect and made the aggregated structures of the hybrids.
誌 謝 ii
摘 要 iii
目 錄 v
表 錄 viii
圖 錄 ix
1. 緒 論 1
1.1. 聚亞醯胺介紹…………………………………………………….1
1.2. 聚亞醯胺材料在之氣體分離膜及偵檢膜應用…………………4
1.3. 研究動機、目的與範圍 11
1.4. 研究方法………………………………………………………...13
2. 酸性具氫鍵以矽氧烷連結的聚亞醯胺共聚物之研究……………. 15
2.1. 前言 16
2.2. 實驗部分 18
2.2.1. 實驗架構………………….……………………………...18
2.2.2. 化學藥品…………………………………………………19
2.2.3. 聚合反應………………………………………...…….…20
2.2.4. 鑑定及特性研究………………………...……………….22
2.3. 結果與討論……………………………………………………...23
2.3.1. 紅外線光譜分析…………………………...………….…23
2.3.2. 固態碳十三核磁共振光譜分析……………………....…24
2.3.3. 熱性質研究……………………………….…………….26
2.3.4. 固態核磁共振自旋-自旋緩解時間(T2)之測定及研究.33
2.4. 結論 37
3. 含氟、羥基聚(矽氧烷-亞醯胺)共聚物研究 38
3.1. 前言 39
3.2. 實驗部分 41
3.2.1. 實驗架構 41
3.2.2. 化學藥品 42
3.2.3. 聚合反應……………………………………………………43
3.2.4. 鑑定及特性研究……………………………………………45
3.3. 結果與討論…………………………….…………………..…46
3.3.1. 紅外線光譜分析…………………………………………...46
3.3.2. 固態碳十三核磁共振光譜分析……………………….......48
3.3.3. 熱性質研究………………………………………………...50
3.3.4. 固態核磁共振自旋-自旋緩解時間(T2)之測定及研究….56
3.4. 結論…………………………………………………………….59
4. 由固態核磁共振光譜研究新型氫鍵、酸性含氟的聚(醯胺-亞醯胺-矽石)混摻物…………………………………………………...……60
4.1. 前言…………………………………………………………….61
4.2. 實驗部分…………………………………………………….…63
4.2.1. 化學藥品……………………………………………………63
4.2.2. 聚合反應……………………………………………………64
4.2.3. 鑑定及特性研究……………………………………………66
4.2.4. 實驗架構……………………………………………………67
4.3. 結果與討論…………………………………………………….69
4.3.1. 結構和特性研究…………………………………………..69
4.3.2. 29Si NMR交叉極化動力學………………………………...74
4.3.3. 比較四種混成物的動力學行為…………………………..78
4.4. 結論……………………………………………………………..84
5. 矽氧烷和矽石對酸性、氫鍵含氟的聚(醯胺-亞醯胺-矽石)混摻物熱氧裂解的效應……………………………………………………..85
5.1. 前言……………………………………………………………..86
5.2. 實驗部分……………………………………………………….88
5.2.1. 化學藥品…………………………………………………...88
5.2.2. 熱分析……………………………………………………...88
5.2.3. 紅外線光譜分析…………………………………………...89
5.3. 結果與討論…………………………………………………….90
5.3.1. 熱分析.…………………………………………………....90
5.3.2. 紅外線光譜分析…………………………………………..97
5.3.3. 熱氧誘導(OIT)研究……………………………………...105
5.4. 結論……………………………………………………………107
6. 總結論 108
參 考 文 獻 111
論 文 發 表 133
自 傳 136
[1] 金進興,”聚醯亞胺在IC元件上之應用”,工業材料,114,118-135,1996。
[2] Mittal, K.L., (editor) “POLYMIDE (Synthesis, Characterization, and Applications),” Plenum Press, New York, 1984.
[3] Ghosh, M.K. and Mittal, K.L., (editors) “POLYMIDE: fundamental and applications,” Marcel Dekker, New York, 1996.
[4] Hasegawa, M. and Horie, K., “Photophysics, photochemistry, and optical properties of polyimides,” Progress of Polymer Science, Vol.26, pp.259-335, 2001.
[5] Kim, D.Y., Cho, H.N. and Kim, C.Y., “Blue light emitting polymers,” Progress of Polymer Science, Vol.25, pp.1089-1139, 2000.
[6] Maier, G., “Low dielectric constant polymers for microelectronics,” Progress of Polymer Science, Vol.26, pp.3-65, 2001.
[7] Langsam, M., “Polyimides for gas separation“ In Ghosh, M.K. and Mittal, K.L. (editors) “POLYMIDE: fundamental and applications,” Marcel Dekker, New York, 1996.
[8] Pandey, P. and Chauhan, R.S., “Membranes for gas separation,” Progress of Polymer Science, Vol.26, pp.853-893, 2001.
[9] Koros, W.J. and Mahajan, R., “Pushing the limits on possibilities for large scale gas separation: which strategies?” Journal of Membrane Science, Vol. 175, pp.181-196, 2000.
[10] Robeson, L.M., Smith, C.D. and Langsam, M., “A group contribution approach to predict permeability and permselectivity of aromatic polymer,” Journal of Membrane Science, Vol. 132, pp.33-54, 1997.
[11] Aoki T., “Macromolecular design of permselective membranes,” Progress of Polymer Science, Vol.24, pp.951-993, 1999.
[12] Su, T.M., Ball, I.J., Conklin, J.A., Huang, S.C., Larson, R.K. and Nguyen, S.L., “Polyaniline/Polyimide Blends for Pervaporation and Gas Separation Studies,” Synthetic Metals, Vol.84, pp.801-802, 1997.
[13] Kapantaidakis, G.C., Kaldis, S.P., Dabou, X.S. and Sakellaropoulos, G.P., “Gas permeation through PSF-PI miscible blend membranes,” Journal of Membrane Science, Vol. 110, pp.239-247, 1996.
[14] Yong, H.H., Park, H.C., Kang, Y.S., Won, J. and Kim, W.N., “Zeolite-filled polyimide membrane containing 2, 4, 6-triamino- pyrimidine,” Journal of Membrane Science, Vol. 188, pp.151-163, 2001.
[15] Hu, Q., Marand, E., Dhingra, S., Fritsch, D., Wen, J. and Wilkes, G., “Poly(amide-imide)/TiO2 Nano-Composite Gas Separation Membranes:Fabrication and Characterization,” Journal of Membrane Science, Vol.135, pp.65-79, 1997.
[16] Hu, Q. and Marand, E., “In Situ Formation of Nanosized TiO2 Domains within Poly (Amide-Imide) by a Sol-Gel Process,” Polymer, Vol.40, pp.4833-4843, 1999.
[17] Cornelius, C., Hibshman, C. and Marand, E., “Hybrid organic-inorganic membranes,” Separation and Purification Technology, Vol.25, pp.181-193, 2001.
[18] 施正雄,“化學感測器專題報導” 化學,Vol. 59,No. 2, pp.199-200,2001.
[19] 吳朗,沈季燕 和 沈瑮堂,“表面聲波SAW化學感測器” 化學,Vol. 59,No. 2, pp.279-286,2001.
[20] Nieuwenhuizen, M.S. and Harteveld, J.L.N., “Studies on a surface acoustic wave (SAW) dosimeter sensor for organophosphorous nerve agents,” Sensors and Actuators B, Vol.40, pp.167-173, 1997.
[21] Grate, J.W., Rose-Pehrsson, S.L., Venezky, D.L., Klusty, M. and Wohltjen, H., “Smart Sensor System for Trace Organophosphous and Organsulfur Vapor Detection Employing a Temperature-Controlled Array of Surface Acoustic Wave Sensors, Automated Sample Preconcentration, and Pattern Recognition,” Anal. Chem., Vol.65, pp.1868-1881, 1993.
[22] Grate, J.W., Klusty, M., McGill, R.A., Abraham, M.H., Whiting, G. and Andonian-Haftvan, J., “The Predominant Role of Swelling-Induced Modulus Changes of the Sorbent Phase in Determining the Responses of Polymer-Coated Surface Acoustic Wave Vapor Sensors,” Anal. Chem., Vol.64, pp.610-624, 1992.
[23] Mlsma, T.E., Mouery, R. and McGill, R.A., “The Design of Aromatic Acid Silicone Polymer and their Evaluation as Sorbent Coatings for Chemical Sensor,” In: Proceedings of Silicanes In Coating II, pp. 1-19, 24-26 March, Florida, USA. 1998.
[24] McGill, R.A., Abraham, M.H. and Grate, J.W., “Choosing polymer coatings for chemical sensors,” CHEMTECH, Vol.24, No.9, pp.27-37, 1994.
[25] Snow, A.W., Sprague, L.G., Soulen, R.L., Grate, J.W. and Wohltjen, H., “Synthesis and Evaluation of Hexafluorodimethylcarbinol Functionalized Polymers as Microsensor Coatings,” Journal of Applied Polymer Science, Vol.43, pp.1659-1671, 1991.
[26] Rebière, D., Déjous, C., Pistré, J., Planade, R., Lipskier, J.F. and Robin, P., ”Surface acoustic wave detection of organophosphorus compounds with fluoropolyol coatings,” Sensors and Actuators B, Vol.43, pp.34-39, 1997.
[27] Grate, J.W., Kaganove, S.N., Patrash, S.J., Craig, R. and Bliss, M., “Hybrid Organic/Inorganic Copolymers with Strogly Hydrogen-Bond Acidic Properties for Acoustic Wave and Optical Sensors,” Chem. Matter., Vol.9, pp.1201-1207, 1997.
[28] Grate, J.W., Patrash, S.J., Kaganove, S.N. and Wise, B.M., “Hydrogen Bond Acidic Polymers for Surface Acoustic Wave Vapor Sensors and Arrays,” Anal. Chem., Vol.71, pp.1033-1040, 1999.
[29] Grubb, T.L., Ulery, V.L., Smith, T.J., Tullos, G.L., Tagci, H., Mathias, L.J. and Langsam, M., “Highly soluble polyimides from sterically hindered diamines,” Polymer, Vol.40, pp.4279-4288, 1999.
[30] Ueda, M. and Nakayama, T., “A New Negative-Type Photosensitive Polyimide Based on Poly(hydroxyimide), a Cross-Linker, and a Photoacid Generator,” Macromolecules, Vol.29, pp.6427-6431, 1996.
[31] Yu, H.S., Yamashita, T. and Horie, K., “Synthesis and Chemically Amplified Photo-Cross-Linking Reaction of Polyimide Containing an Epoxy Group,” Macromolecules, Vol.29, pp.1144-1150, 1996.
[32] Tullos, G.L. and Mathias, L.J., “Unexpected thermal conversion of hydroxy-containing polyimide to polybenzoxazoles,” Polymer, Vol.40, pp.3463-3468, 1999.
[33] Chen, T.A., Jen, A.K.Y. and Cai, Y., “Facile Approach to Nonlinear Optical Side-Chain Aromatic Polyimides with Large Second-Order Nonlinearity and Thermal Stability,” J. Am. Chem. Soc., Vol.117, pp.7295-7296, 1995.
[34] Agag, T. and Takeichi, T., “Synthesis and characterization of epoxy film cured with reactive polyimide,” Polymer, Vol.40, pp.6557-6563, 1999.
[35] Zuo, M. and Takeichi, T., “Preparation and characterization of poly (urethane-imide) films prepared from reactive polyimide and polyurethane prepolymer,” Polymer, Vol.40, pp.5153-5160, 1999
[36] Zuo, M. and Takeichi, T., “Novel method for the preparation of poly (urethane-imide)s and their properties,” J. Polym. Sci. Polym. Chem. Vol.35, 3745-3753, 1997.
[37] Clarson, S.J. and Semlyen, J.A., “Siloxane Polymers,” Ellis Horwood-PTR Prentice Hall, New Jersey, pp.72-134, 1993.
[38] Pater, R.H., “Thermosetting Polyimides. A Review,” SAMPE J, Vol.30, pp.29-38, 1994.
[39] Lai, J.Y., Li, S.H. and Lee, K.R., “Premselectivities of polysiloxaneimide membrane for aqueous ethanol mixture in pervaporation,” Journal of Membrane Science, Vol.93, pp.273-282, 1994.
[40] Tian, S.B., Pak, Y.S. and Xu, G., “Polyimide-polysiloxane- segmented copolymer as high-temperature polymer electrolytes,” J. Polym. Sci. Polym. Phys., Vol.32, pp.2019-2023, 1994.
[41] Kuckertz, V.H., “Siloxanmodifizierte Polypyromellitimide,” Makromol Chem, Vol.98, pp.101-108, 1966.
[42] Greber, G., “Studies on Silcone-grafted Copolyimides,” Ang Makromol Chem, Vol.4, No.5, pp.212-219, 1968.
[43] St. Clair, A.K., St. Clair, T.L. and Ezzell, S.A., In: Lee, L.H., editor. “Adhesive Chemistry”, Plenum Press, New York, pp.467, 1984,.
[44] Lai, J.Y., Lee, M.H., Chen, S.H. and Shyn, S.S., “Polysiloxaneimide Membranes I. Physical Properties,” Polym. J., Vol.26, pp.1360-1367, 1994.
[45] Chang, T.C. and Wu, K.H., “Characterization and Degradation of some Silicon-Containing Polyimides,” Polymer Degradation and Stability, Vol.60, pp.161-168, 1998.
[46] Chang, T.C., Wu, K.H., Liao, C.L., Lin, S.T. and Wang, G.P., “Thermo-Oxidative Degradationm of Siloxane-containing Polyimide and Unmodified Polyimide,” Polymer Degradation and Stability, Vol.62, pp.299-305, 1998.
[47] Snow, A.W., Sprague, L.G., Soulen, R.L., Grate, J.W. and Wohltjen, H., “Synthesis and Evaluation of Hexafluorodimethylcarbinol Functionalized Polymers as Microsensor Coatings,” Journal of Applied Polymer Science, Vol.43, pp.1659-1671, 1991.
[48] McGill, R.A., Abraham, M.H. and Grate, J.W., “Choosing polymer coatings for chemical sensors,” CHEMTECH, Vol.24, No.9, pp.27-37, 1994.
[49] Grate, J.W., Kaganove, S.N., Patrash, S.J., Craig, R. and Bliss, M., “Hybrid Organic/Inorganic Copolymers with Strogly Hydrogen-Bond Acidic Properties for Acoustic Wave and Optical Sensors,” Chem. Matter., Vol.9, pp.1201-1207, 1997.
[50] Grate, J.W., Patrash, S.J., Kaganove, S.N. and Wise, B.M., “Hydrogen Bond Acidic Polymers for Surface Acoustic Wave Vapor Sensors and Arrays,” Anal. Chem., Vol.71, pp.1033-1040, 1999.
[51] Hoyt, A.E., Ricco, A.J., Yang, H.C. and Crook, R.M., “Speciation of Linear and Branched Hydrocarbons by a fluorinated Polyimide Film-Based Surface Acoustic Wave Sensor,” J. Am. Chem. Soc., Vol.117, pp.8672-8673, 1995.
[52] Tékély, P., Canet, D. and Delpuech, J., “Polyimide-Silica Gel Hybrids Containing Metal Salts: Preparation via the Sol-Gel Reaction,” J. Mol. Phys. Vol.67, pp.81-91, 1989.
[53] Tullos, G.L., Powers, J.M., Jeskey, S.J. and Mathias, L.J., “Thermal Conversion of Hydroxy-Containing Imides to Benzoxazoles: Polymer and Model Compound Stusy,” Macromolecules, Vol.32, pp.3598-3612, 1999.
[54] Turk, M.J., Ansari, A.S., Alston, W.B., Gahn, G.S., Frimer, A.A. and Scheiman, D.A., “Evaluation of the Thermal Oxidative Stability of Polyimides via TGA Techniques,” J. Polym. Sci. Polym. Chem., Vol.37, pp.3943-3956, 1999.
[55] Tian, S.B., Pak, Y.S. and Xu, G., “Polyimide-polysiloxane- segmented copolymer as high-temperature polymer electrolytes,” J. Polym. Sci. Polym. Phys., Vol.32, pp.2019-2023, 1994.
[56] Van Krevelen, D.W., Van Herden. C. and Huntjens, F.J., “Physicochemical aspects of the pyrolysis of coal and related organic compounds,” Fuel, Vol.30, pp. 253-259, 1951.
[57] Soane, D.S. and Martynenko, Z., “Polymers in Microelectronics, Fundamentals and Applications,” Elsevier , Amsterdam, pp.159, 1989.
[58] Ghosh, M.K. and Mittal, K.L., (editors) “POLYMIDE : fundamental and applications,” Marcel Dekker, New York, 1996.
[59] Joly, C., Cerf, D.L., Chappey, C., Langevin, D. and Muller, G., “Residual solvent effect on the permeation properties of fluorinated polyimide films,” Separation and Purification Technology, Vol.16, pp.47-54, 1999.
[60] Kim, J.H., Chang, B.J., Lee, S.B. and Kim, S.Y., “Incorporation effect of fluorinated side group into polyimide membranes on their pervaporation properties,” Journal of Membrane Science, Vol.169, pp.185-196, 2000.
[61] Chen, T.A., Jen, A.K.Y. and Cai, Y., “Facile Approach to Nonlinear Optical Side-Chain Aromatic Polyimides with Large Second-Order Nonlinearity and Thermal Stability,” J. Am. Chem. Soc., Vol.117, pp.7295-7296, 1995.
[62] Trigaud, T., Moliton, J.P., Quillat, M. and Chiron, D., “Thermal assisted ion shrinkage (TAIS) of fluorinated polyimide for optical telecommunication devices,” Opt. Mater., Vol.12, pp.225-228, 1999.
[63] Kim, J.H., Kim, E.J., Choi, E.C., Kim, C.W., Cho, J.H., Lee, Y.W., You, B.G., Yi, S.Y., Lee, H.J., Han, K., Jang, W.H., Rhee, T.H., Lee J.W. and Pearton, S.J. “Evaluation of fluorinated polyimide etching processes for optical waveguide fabrication,” Thin Solid Films, Vol.341, pp.192-195, 1999.
[64] Belfield, K.D., Najjar, O. and Sriram, S.R., “Synthesis of polyurethanes and polyimides for photorefractive application,” Polymer, Vol.41, pp.5011-5020, 2000.
[65] Homma, T., “Fluorinate interlayer dielectric films in ULSI multilevel interconnections,” J. Non-cryst. Solid, Vol.187, pp.49-59, 1995.
[66] Lee, Y.K. and Murarka, S.P., “Characterization of charges in fluorinated polyimide film with different thermal history by using capacitance-voltage methods,” Mater. Research Bull., Vol.34, pp.869-876, 1999.
[67] Ueda, M. and Nakayama, T., “A New Negative-Type Photosensitive Polyimide Based on Poly(hydroxyimide), a Cross-Linker, and a Photoacid Generator,” Macromolecules, Vol.29, pp.6427-6431 1996.
[68] Yu, H.S., Yamashita, T. and Horie, K., “Synthesis and Chemically Amplified Photo-Cross-Linking Reaction of Polyimide Containing an Epoxy Group,” Macromolecules, Vol.29, pp.1144-1150, 1996.
[69] Tullos, G.L. and Mathias, L.J., “Unexpected thermal conversion of hydroxy-containing polyimides to polybenzoxazoles,” Polymer, Vol.40, pp.3463-3468, 1999.
[70] Hoyt, A.E., Ricco, A.J., Yang, H.C. and Crook, R.M., “Speciation of Linear and Branched Hydrocarbons by a fluorinated Polyimide Film-Based Surface Acoustic Wave Sensor,” J. Am. Chem. Soc., Vol.117, pp.8672-8673, 1995.
[71] Sun, H.T., Chen, Z.H., Wlodarski, W. and McCormick, M., “Silica and polyimide coated quartz crystal resonators for analysis of liquids,” Sensors and Actuators B, Vol.35-36, pp.146-153, 1996.
[72] Zheng, X.R., Lai, P.T., Liu, B.Y., Li, B. and Cheng, Y.C., “An integrated PVDF ultrasonic sensor with improved sensitivity using polyimide,” Sensors and Actuators A, Vol.63, pp.147-152, 1997.
[73] Matsuguch, M., Kuroiwa, T., Miyagishi, T., Suzuki, S., Ogura, T. and Sakai, Y., “Stability and reliability of capacitive-type relative humidity sensors using crosslinked polyimide films,” Sensors and Actuators B, Vol.52, pp.53-57, 1998.
[74] Wessa, T., Barie, N., Rapp, M. and Ache, H.J., “Polyimide, a new shielding layer for sensor applications,” Sensors and Actuators B, Vol.53, pp.63-68, 1998.
[75] Grate, J.W., Kaganove, S.N., Patrash, S.J., Craig, R. and Bliss, M., “Hybrid Organic/Inorganic Copolymers with Strogly Hydrogen-Bond Acidic Properties for Acoustic Wave and Optical Sensors,” Chem. Matter., Vol.9, pp.1201-1207, 1997.
[76] Grate, J.W., Patrash, S.J., Kaganove, S.N. and Wise, B.M., “Hydrogen Bond Acidic Polymers for Surface Acoustic Wave Vapor Sensors and Arrays,” Anal. Chem., Vol.71, pp.1033-1040, 1999.
[77] Chang, T.C. and Wu, K.H., “Characterization and degradation of some silicon-containing polyimides,” Polymer Degradation and Stability, Vol.60, pp.161-168, 1998.
[78] Chang, T.C., Wu, K.H. and Chiu, Y.S., “Characterization and degradation of some phosphorus-containing polyimides,” Polymer Degradation and Stability, Vol.63, pp.103-109, 1999.
[79] Kuckertz, V.H., “Siloxanmodifizierte Polypyromellitimide,” Makromol Chem, Vol.98, pp.101-108, 1966.
[80] Clair, A.K.S., Clair, T.L.S. and Shevket, K.I., Polym. Mater. Sci. Eng., Vol.51, pp.61, 1984.
[81] Tékély, P., Canet, D. and Delpuech, J., “Polyimide-Silica Gel Hybrids Containing Metal Salts: Preparation via the Sol-Gel Reaction,” J. Mol. Phys. Vol.67,pp.81-91, 1989.
[82] Mikawa, M., Nagaoka, S. and Kawakami, H., “Gas Transport Properties and Molecular Motions of 6FDA Copolyimides,” Journal of Membrane Science, Vol.163, 167-176, 1999.
[83] Turk, M.J., Ansari, A.S., Alston, W.B., Gahn, G.S., Frimer, A.A. and Scheiman, D.A., “Evaluation of the Thermal Oxidative Stability of Polyimides via TGA Techniques,” J. Polym. Sci. Polym. Chem., Vol.37, pp.3943-3956, 1999.
[84] Molinero, A.L., Martinez, L., Villareal, A. and CastilloJ. R. “Silicon Determination by Inductively Coupled Plasma Atomic Emission Spectrometry after Geration of Volatile Silicon Tetrafluoride,” Talanta. , Vol.45, pp.1211-1217, 1998.
[85] Mark, J.E., Lee, C.Y. and Bianconic, P.A., “Hybrid Organic-Inorganic Composites,” American Chemical Society, ACS Symposium Series 585,Washington DC, 1995.
[86] Loy, D.A. and Shea, K.J. “Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials,” Chem. Rev., Vol.95, pp.1431-1442, 1995.
[87] Wen, G.L., “Organic/Inorganic Hybrid Netwotk Materials by the Sol-Gel Approach,” Chem. Mater., Vol.8, pp.1667-1681, 1996.
[88] Fegar, C., Khojasteh, M.M. and Htoo, M.S., (editors.) “Advances in polyimide science and technology,” Technomic Publishing, New York, 1991.
[89] Ghosh, M.K. and Mittal, K.L., (editors.) “Polyimides: fundamentals and applications,” Marcel Dekker, New York, 1996.
[90] Aoki T., “ Macromolecular design of permselective membranes,” Progress of Polymer Science, Vol.24, pp.951-993, 1999.
[91] Li, Y.F., Ji, T. and Zhang, J., “ Preparation and Properties of Novel Aromatic Polyimides Jacked with Dendritic Fregments,” J. Polym. Sci. Polym. Chem., Vol.38, pp.189-197, 2000.
[92] Liaw, D.J. and Liaw, B.Y., “Synthesis and properties of new polyimides derived from 1,1-bis[4-(4-aminophenoxy)phenyl] cyclododecane” Polymer, Vol.40, pp.3183-3189, 1999.
[93] Kricheldorf, H.R., Wollheim, T., Koning, C.E., Werumeus-Buning H.G., and Altstädt, V., “Thermoplastic elastomers 1 Pol(ether-ester- imide)s based on 1,4-diaminobutane, trimelltic anhydride, 1,4-dihydroxybutane and poly(tetramethylene oxide) diols,” Polymer Vol.42, pp.6699-6708, 2001.
[94] Nakamura, K., Ando, S. and Takeichi, T., “Thermal analysis and solid-state 13C NMR study of crosslink in polyimides containing acetylene groups in the main chain,” Polymer Vol.42, pp.4045-4054, 2001.
[95] Yang, C.P., Chen, R.S. and Hung, K.S., “Synthesis and properties of soluble colorless poly(amide-imide)s based on N,N’-bis(3- carboxyphenyl)-4,4’-oxydiphthalimide and various aromatic diamines,” Polymer, Vol.42, pp.4569-4577, 2001.
[96] Yang, C.P., Chen, R.S. and Chen, J.A., “Preparation and Preperties of New Poly(amide-imide)s Based on 1,4-Bis(4-trimellitimido phenoxy)naphthalene and Aromatic Diamines,” J. Polym. Sci. Polym. Chem., Vol.38, pp.1-8, 2000.
[97] Lee, Y.B., Park, H.B., Shim, J.K. and Lee, Y.M., “Synthesis and Characterization of Polyamideimide-Branched Siloxane and Its Gas-Separation,” Journal of Applied Polymer Science, Vol.74, pp.965-973, 1999.
[98] Hsiao, S.H. and Chang, L.M., “Synthesis and Properties of Poly(imide-hydrazide)s N-[p-(or m-)Carboxyphenyl]trimellitimide and Aromatic Dihydrazides or p-Aminobenzhydrazide via the Phosphorylation Reaction,” J. Polym. Sci. Polym. Chem., Vol.38, pp.1599-1608, 2000.
[99] Tamai, S., Ohkawa, Y. and Yamaguchi, A., “Aromatic thermotropic liquid crystalline polymer from 1,3-bis[4-(4-aminophenoxy)-,- dimethylbenzyl]benzene,” Polymer, Vol.38, pp.4079-4084, 1997.
[100] Kim, H.K., Moon, I.K., Lee, H.J., Han, S.G. and Won, Y.H., “Second-order NLO polyamideimides based on functionalized stilbene derivatives: direct polycondensation and characterization,” Polymer Vol.39, pp.1719-1726, 1998.
[101] Xu, Z.K., Böhning, M., Springer, J., Steinhauser, N. and Mülhaupt, R., “Gas transport properties of highly fluorinated polyamideimides,” Polymer Vol.38, pp.581-588, 1997.
[102] Ha, S.Y., Park, H.H. and Lee, Y.M., “Percolational Effect of Siloxane Content in poly(amideimide siloxane) on the Gas Permeation Behavior,” Macromolecules Vol.32, pp.2394-2396, 1999.
[103] Lee, Y.B., Park, H.B., Shim, J.K. and Lee, Y.M., “Synthesis and Characterization of Polyamideimide-Branched Siloxane and Its Gas-Separation,” Journal of Applied Polymer Science, Vol.74, pp.965-973, 1999.
[104] Hu, Q., Marand, E., Dhingra, S., Fritsch, D., Wen, J. and Wilkes, G., “Poly(amide-imide)/TiO2 Nano-Composite Gas Separation Membranes:Fabrication and Characterization,” Journal of Membrane Science, Vol.135, pp.65-79, 1997.
[105] Hu, Q. and Marand, E., “In Situ Formation of Nanosized TiO2 Domains within Poly(Amide-Imide) by a Sol-Gel Process,” Polymer, Vol.40, pp.4833-4843, 1999.
[106] Kim, J.H., Kim, E.J., Choi, E.C., Kim, C.W., Cho, J.H., Lee, Y.W., You, B.G., Yi, S.Y., Lee, H.J., Han, K., Jang, W.H., Rhee, T.H., Lee J.W. and Pearton, S.J. “Evaluation of fluorinated polyimide etching processes for optical waveguide fabrication,” Thin Solid Films, Vol.341, pp.192-195, 1999.
[107] Chan, C.K., and Chu, I.M. “Phase behavior and molecular chain environment of organic-inorganic hybrid materials based on poly(n-butyl methacrylate-co-(3-(methacryloxypropyl)) trimethoxy- silane),” Polymer, Vol.42, pp.6823-6831, 2001.
[108] Wang, J., Cheung, M.K. and Mi, Y., “Miscibility of poly(ethyl oxazoline)/poly(4-vinylphenol) blends as investigated by the high-resolution solid-state 13C NMR,” Polymer, Vol.42, pp.2077- 2083, 2001.
[109] Lin, R.H., Woo, E.M. and Chiang, J.C., “A solid-state 13C NMR study on phase heterogeneity in the miscible blend of amphous poly(benzyl methacrylate) with semicrystalline poly(ethylene oxide),” Polymer, Vol.42, pp.4289-4297, 2001.
[110] Nakaoki, T., Ohira, Y. and Horii, F., “Investigation of the crystallization process of syndiotactic polypropylene quenched at 0 oC from the melt or concentrated solutions by solid-state 13C NMR spectroscopy,” Polymer, Vol.42, pp.4555-4561, 2001.
[111] Brus, J. and Dybal, J., “Solid-state NMR syudy of structure, size and dynamics of domains in hybrid siloxane networks,” Polymer, Vol.42, pp.5269-5282, 2001.
[112] Hou, S.S. and Kuo, P.L., “Morphological, thermal and solid-state NMR study on a novel PMMA/crosslinked silicone semi-IPN,” Polymer, Vol.42, pp.9505-9511, 2001.
[113] Yi, J.Z. and Goh, S.H., “Miscibility of poly(methacrylic acid)/poly(4-vinylpryidine) blends and complexes investigated by high-resolution solid-state 13C NMR,” Polymer, Vol.42, pp.9313-9316, 2001.
[114] Mikawa, M., Nagaoka, S. and Kawakami, H., “Gas Transport Properties and Molecular Motions of 6FDA Copolyimides,” Journal of Membrane Science, Vol.163, pp.167-176, 1999.
[115] Chang, T.C., Wang, G.P., Tsai, H.C., Hong, Y.S. and Chiu, Y.S., “Organic-Inorganic Hybrid Materials XI. Characterization and Degradation of Hydrogen-Bond Acidic Fluorinated Poly(Siloxane- Amideimide-Silica) Hybrids,” Polymer Degradation and Stability, Vol.74, No.2, pp229-237, 2001.
[116] Chang, T.C., Wang, G.P., Tsai, H.C., Hong, Y.S. and Chiu, Y.S., “Organic-Inorganic Hybrid Materials X. Characterization and Degradation of Hydroxyl-Containing Fluorinated Polyimide-Silica Hybrids,” International Journal of Polymer Analysis and Charactdrization, in press, 2002.
[117] Glaser, R.H. and Wilkes, G.L., “Structure Property Behavior of Polydimethylsiloxane and Poly(Tetramethylene Oxide) Modified TEOS Based Sol-gel Materials V. Effect of Titaninmisopropoxide Incorporation,” Polym Bull, Vol. 19, pp.51-57, 1988.
[118] Ahn, T.K., Kim, M. and Choe, S., “HydrogenBonding Strength in the Blends of Polybenzimidazole with BTDA and DSDABased Polyimides,” Macromolecules, Vol. 30, No. 11, pp.3369-3374, 1997.
[119] Avadhani, C.V. and Chujo, Y., “PolyimideSilica Gel Hybrids Containing Metal Salts: Preparation via the SolGel Reaction,” Appl. Organometal. Chem., Vol.11, No.2, pp.153, 1997.
[120] Smaihi, M., Schrotter, J.C., Lesimple, C., Prevost, I. and Guizard, C., “Gas Separation Properties of Hybrid Imide-Siloxane Copolymers with Various Silica Contents,” Journal of Membrane Science, Vol. 161, pp. 157-170, 1999.
[121] Wu, K.H., Chang, T.C., Wang, Y.T., and Chiu, Y.S., “Organic-Inorganic Hybrid Materials. I. Characterization and Degradation of Poly(imide-silica) Hybrids,” J. Polym. Sci. Polym. Chem., Vol.37, pp.2275-2284, 1999.
[122] Mehring, M., “Principles of High Resolution NMR in Solids,” 2nd ed., Springer, Berlin, 1983.
[123] Gijsman, P., Tummers, D. and Janssen, K., “Differences and similarities in the thermooxidative degradation of polyamide 46 and 66,” Polymer Degradation and Stability, Vol.49, pp.121-125, 1995.
[124] Janssen, K., Gijsman, P. and Tummers, D., “Mechanistic aspects of the stabilization of polyamides by combinations of metal and halogen salts,” Polymer Degradation and Stability, Vol.49, pp.127-133, 1995.
[125] Li, R. and Hu, X., “Study on discoloration mechanism of polyamide 6 during thermo-oxidative degradation,” Polymer Degradation and Stability, Vol.62, pp.523-528, 1998.
[126] Bockhorn, H., Hornung, A., Hornung, U. and Weichmann, J., “Kinetic study on non-catalysed degradation of polyamide 6 with isothermal and dynamic methods,” Thermochimica Acta, Vol.337, pp.97-110, 1999.
[127] Steckenreiter, T., Balanzat, E., Fuess, H. and Trautmann, C., “Pyrolytic effects induced by energetic ions in polymers,” Nucl. Instr. and Meth. in Phys. Res. B, Vol.151, pp.161-168, 1999.
[128] Torrecillas, R., Regnier, N. and Mortaigne, B., “Thermal degradation of bismaleimide and bisnadimide networks-products of thermal degradayion and type of crosslinking points,” Polymer Degradation and Stability, Vol.51, pp.307-318, 1996.
[129] Régnier, N., Berriot, J., Lafontaine, E. and Mortaigne, B., “Spectromechanical analysis of the structure and oxidation of PMR thermoset thermally-stable resins,” Polymer Degradation and Stability, Vol.73, pp.485-490, 2001.
[130] Popov-Pergal, K., Pergal, M., Babić, D., Marinović-Cincović, M. and Jovanović, R., “Thermal, oxidative and radiation stability of polyimides I. Bismaleimidoethane and different diamine-based polyimides” Polymer Degradation and Stability, Vol.67, pp.547-552, 2000.
[131] Turk, M.J., Ansari, A.S., Alston, W.B., Gahn, G.S., Frimer, A.A. and Scheiman, D.A., “Evaluation of the thermal Oxidative Stability of Polyimides via TGA Techniques,” J. Polym. Sci. Polym. Chem., Vol.37, pp.3943-3956, 1999.
[132] Xie, W., Pan, W.P. and Chuang, K.C., “Thermal characterization of PMR polyimides,” Thermochimica Acta, Vol.367-368, pp.143-153, 2001.
[133] Ghosh, S., Khastgir, D., Bhowmick, A.K. and Mukunda, P.G., “Thermal degradation and ageing of segmented polyamides,” Polymer Degradation and Stability, Vol.67, pp.427-436, 2000.
[134] Vieira, I., Severgnini, V.L.S., Mazera, D.J., Soldi, M.S., Pinheiro, E.A., Pires, A.T.N. and Soldi, V., “Effects of maleated ethylene propylene diene rubber (EPDM) on the thermal stability of pure polyamide/EPDM and polyamide/poly(ethylene terephthalate) blends: kinetic parameters and reaction mechanism,” Polymer Degradation and Stability, Vol.74, pp.151-157, 2001.
[135] Pramoda, K.P., Chung, T.S., Liu, S.L., Oikawa, H. and Yamaguchi, A., “Characterization and thermal degradation of polyimide and polyamide liquid crystalline polymers,” Polymer Degradation and Stability, Vol.67, pp.365-374, 2000.
[136] Ghosh, M.K. and Mittal, K.L., editors. “Polyimides: fundamentals and applications,” Marcel Dekker, New York, 1996.
[137] Yang, C.P., Chen, R.S. and Hung, K.S., “Synthesis and properties of soluble colorless poly(amide-imide)s based on N,N’-bis(3- carboxyphenyl)-4,4’-oxydiphthalimide and various aromatic diamines,” Polymer, Vol.42, pp.4569-4577, 2001.
[138] Yang, C.P., Chen, R.S. and Chen, J.A., “Preparation and Preperties of New Poly(amide-imide)s Based on 1,4-Bis(4-trimellitimido phenoxy)naphthalene and Aromatic Diamines,” J. Polym. Sci. Polym. Chem., Vol.38, pp.1-8, 2000.
[139] Hsiao, S.H. and Chang, L.M., “Synthesis and Properties of Poly(imide-hydrazide)s N-[p-(or m-)Carboxyphenyl]trimellitimide and Aromatic Dihydrazides or p-Aminobenzhydrazide via the Phosphorylation Reaction,” J. Polym. Sci. Polym. Chem., Vol.38, pp.1599-1608, 2000.
[140] Mark, J.E., Lee, C.Y., and Bianconic, P.A., “Hybrid Organic-Inorganic Composites,” American Chemical Society, ACS Symposium Series 585,Washington DC, 1995.
[141] Loy, D.A. and Shea, K.J., “Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials,” Chem. Rev., Vol.95, pp.1431-1442, 1995.
[142] Wen, G.L., “Organic/Inorganic Hybrid Netwotk Materials by the Sol-Gel Approach,” Chem. Mater., Vol.8, pp.1667-1681, 1996.
[143] Hu, Q. and Marand, E., “In Situ Formation of Nanosized TiO2 Domains within Poly(Amide-Imide) by a Sol-Gel Process,” Polymer, Vol.40, pp.4833-4843, 1999.
[144] Hu, Q., Marand, E., Dhingra, S., Fritsch, D., Wen, J. and Wilkes, G., “Poly(amide-imide)/TiO2 Nano-Composite Gas Separation Membranes:Fabrication and Characterization,” Journal of Membrane Science, Vol.135, pp.65-79, 1997.
[145] Wang, G.P., Chang, T.C., Hong, Y.S. and Chiu, Y.S., “Dynamics of novel hydrogen-bonded acidic fluorinated poly(amide- imide-silica) hybrids studied by solid-state NMR,” Polymer, Vol.43, No.8, pp2191-2200, 2002.
[146] Woo, L., Khare, A.K., Blom, H.P., Standford, C. and Ding, S.Y., “Application of the oxidative induction test to depolymerizing systems,” Thermochimica Acta, Vol. 367-368 pp.113-118, 2001.
[147] Phease, T.L., Billingham, N.C. and Bigger, S.W., “The effect of carbon black on the oxidative induction time of medium-density polyethylene,” Polymer, Vol. 41 pp. 9123-9130, 2000.
[148] Kyriakou, S.A., Statherpoulos, M., Parissakis, G.K., Papaspyrides, C.D. and Kartalis, C.N., “Oxidative induction time method based on thermogravimetry for monitoring the restabilization of post-use LDPE,” Polymer Degradation and Stability, Vol.66, pp.49-53, 1999.
[149] Wu, K.H., Chang, T.C., Wang, Y.T., and Chiu, Y.S., “Organic-Inorganic Hybrid Materials. I. Characterization and Degradation of Poly(imide-silica) Hybrids,” J. Polym. Sci. Polym. Chem., Vol.37, pp.2275-2284, 1999.
[150] Sui, Y., Liu, Y.G., Yin, J., Gao, J., Zhu, Z.K., Huang, D.Y. [1] 金進興,”聚醯亞胺在IC元件上之應用”,工業材料,114,118-135,1996。
[2] Mittal, K.L., (editor) “POLYMIDE (Synthesis, Characterization, and Applications),” Plenum Press, New York, 1984.
[3] Ghosh, M.K. and Mittal, K.L., (editors) “POLYMIDE: fundamental and applications,” Marcel Dekker, New York, 1996.
[4] Hasegawa, M. and Horie, K., “Photophysics, photochemistry, and optical properties of polyimides,” Progress of Polymer Science, Vol.26, pp.259-335, 2001.
[5] Kim, D.Y., Cho, H.N. and Kim, C.Y., “Blue light emitting polymers,” Progress of Polymer Science, Vol.25, pp.1089-1139, 2000.
[6] Maier, G., “Low dielectric constant polymers for microelectronics,” Progress of Polymer Science, Vol.26, pp.3-65, 2001.
[7] Langsam, M., “Polyimides for gas separation“ In Ghosh, M.K. and Mittal, K.L. (editors) “POLYMIDE: fundamental and applications,” Marcel Dekker, New York, 1996.
[8] Pandey, P. and Chauhan, R.S., “Membranes for gas separation,” Progress of Polymer Science, Vol.26, pp.853-893, 2001.
[9] Koros, W.J. and Mahajan, R., “Pushing the limits on possibilities for large scale gas separation: which strategies?” Journal of Membrane Science, Vol. 175, pp.181-196, 2000.
[10] Robeson, L.M., Smith, C.D. and Langsam, M., “A group contribution approach to predict permeability and permselectivity of aromatic polymer,” Journal of Membrane Science, Vol. 132, pp.33-54, 1997.
[11] Aoki T., “Macromolecular design of permselective membranes,” Progress of Polymer Science, Vol.24, pp.951-993, 1999.
[12] Su, T.M., Ball, I.J., Conklin, J.A., Huang, S.C., Larson, R.K. and Nguyen, S.L., “Polyaniline/Polyimide Blends for Pervaporation and Gas Separation Studies,” Synthetic Metals, Vol.84, pp.801-802, 1997.
[13] Kapantaidakis, G.C., Kaldis, S.P., Dabou, X.S. and Sakellaropoulos, G.P., “Gas permeation through PSF-PI miscible blend membranes,” Journal of Membrane Science, Vol. 110, pp.239-247, 1996.
[14] Yong, H.H., Park, H.C., Kang, Y.S., Won, J. and Kim, W.N., “Zeolite-filled polyimide membrane containing 2, 4, 6-triamino- pyrimidine,” Journal of Membrane Science, Vol. 188, pp.151-163, 2001.
[15] Hu, Q., Marand, E., Dhingra, S., Fritsch, D., Wen, J. and Wilkes, G., “Poly(amide-imide)/TiO2 Nano-Composite Gas Separation Membranes:Fabrication and Characterization,” Journal of Membrane Science, Vol.135, pp.65-79, 1997.
[16] Hu, Q. and Marand, E., “In Situ Formation of Nanosized TiO2 Domains within Poly (Amide-Imide) by a Sol-Gel Process,” Polymer, Vol.40, pp.4833-4843, 1999.
[17] Cornelius, C., Hibshman, C. and Marand, E., “Hybrid organic-inorganic membranes,” Separation and Purification Technology, Vol.25, pp.181-193, 2001.
[18] 施正雄,“化學感測器專題報導” 化學,Vol. 59,No. 2, pp.199-200,2001.
[19] 吳朗,沈季燕 和 沈瑮堂,“表面聲波SAW化學感測器” 化學,Vol. 59,No. 2, pp.279-286,2001.
[20] Nieuwenhuizen, M.S. and Harteveld, J.L.N., “Studies on a surface acoustic wave (SAW) dosimeter sensor for organophosphorous nerve agents,” Sensors and Actuators B, Vol.40, pp.167-173, 1997.
[21] Grate, J.W., Rose-Pehrsson, S.L., Venezky, D.L., Klusty, M. and Wohltjen, H., “Smart Sensor System for Trace Organophosphous and Organsulfur Vapor Detection Employing a Temperature-Controlled Array of Surface Acoustic Wave Sensors, Automated Sample Preconcentration, and Pattern Recognition,” Anal. Chem., Vol.65, pp.1868-1881, 1993.
[22] Grate, J.W., Klusty, M., McGill, R.A., Abraham, M.H., Whiting, G. and Andonian-Haftvan, J., “The Predominant Role of Swelling-Induced Modulus Changes of the Sorbent Phase in Determining the Responses of Polymer-Coated Surface Acoustic Wave Vapor Sensors,” Anal. Chem., Vol.64, pp.610-624, 1992.
[23] Mlsma, T.E., Mouery, R. and McGill, R.A., “The Design of Aromatic Acid Silicone Polymer and their Evaluation as Sorbent Coatings for Chemical Sensor,” In: Proceedings of Silicanes In Coating II, pp. 1-19, 24-26 March, Florida, USA. 1998.
[24] McGill, R.A., Abraham, M.H. and Grate, J.W., “Choosing polymer coatings for chemical sensors,” CHEMTECH, Vol.24, No.9, pp.27-37, 1994.
[25] Snow, A.W., Sprague, L.G., Soulen, R.L., Grate, J.W. and Wohltjen, H., “Synthesis and Evaluation of Hexafluorodimethylcarbinol Functionalized Polymers as Microsensor Coatings,” Journal of Applied Polymer Science, Vol.43, pp.1659-1671, 1991.
[26] Rebière, D., Déjous, C., Pistré, J., Planade, R., Lipskier, J.F. and Robin, P., ”Surface acoustic wave detection of organophosphorus compounds with fluoropolyol coatings,” Sensors and Actuators B, Vol.43, pp.34-39, 1997.
[27] Grate, J.W., Kaganove, S.N., Patrash, S.J., Craig, R. and Bliss, M., “Hybrid Organic/Inorganic Copolymers with Strogly Hydrogen-Bond Acidic Properties for Acoustic Wave and Optical Sensors,” Chem. Matter., Vol.9, pp.1201-1207, 1997.
[28] Grate, J.W., Patrash, S.J., Kaganove, S.N. and Wise, B.M., “Hydrogen Bond Acidic Polymers for Surface Acoustic Wave Vapor Sensors and Arrays,” Anal. Chem., Vol.71, pp.1033-1040, 1999.
[29] Grubb, T.L., Ulery, V.L., Smith, T.J., Tullos, G.L., Tagci, H., Mathias, L.J. and Langsam, M., “Highly soluble polyimides from sterically hindered diamines,” Polymer, Vol.40, pp.4279-4288, 1999.
[30] Ueda, M. and Nakayama, T., “A New Negative-Type Photosensitive Polyimide Based on Poly(hydroxyimide), a Cross-Linker, and a Photoacid Generator,” Macromolecules, Vol.29, pp.6427-6431, 1996.
[31] Yu, H.S., Yamashita, T. and Horie, K., “Synthesis and Chemically Amplified Photo-Cross-Linking Reaction of Polyimide Containing an Epoxy Group,” Macromolecules, Vol.29, pp.1144-1150, 1996.
[32] Tullos, G.L. and Mathias, L.J., “Unexpected thermal conversion of hydroxy-containing polyimide to polybenzoxazoles,” Polymer, Vol.40, pp.3463-3468, 1999.
[33] Chen, T.A., Jen, A.K.Y. and Cai, Y., “Facile Approach to Nonlinear Optical Side-Chain Aromatic Polyimides with Large Second-Order Nonlinearity and Thermal Stability,” J. Am. Chem. Soc., Vol.117, pp.7295-7296, 1995.
[34] Agag, T. and Takeichi, T., “Synthesis and characterization of epoxy film cured with reactive polyimide,” Polymer, Vol.40, pp.6557-6563, 1999.
[35] Zuo, M. and Takeichi, T., “Preparation and characterization of poly (urethane-imide) films prepared from reactive polyimide and polyurethane prepolymer,” Polymer, Vol.40, pp.5153-5160, 1999
[36] Zuo, M. and Takeichi, T., “Novel method for the preparation of poly (urethane-imide)s and their properties,” J. Polym. Sci. Polym. Chem. Vol.35, 3745-3753, 1997.
[37] Clarson, S.J. and Semlyen, J.A., “Siloxane Polymers,” Ellis Horwood-PTR Prentice Hall, New Jersey, pp.72-134, 1993.
[38] Pater, R.H., “Thermosetting Polyimides. A Review,” SAMPE J, Vol.30, pp.29-38, 1994.
[39] Lai, J.Y., Li, S.H. and Lee, K.R., “Premselectivities of polysiloxaneimide membrane for aqueous ethanol mixture in pervaporation,” Journal of Membrane Science, Vol.93, pp.273-282, 1994.
[40] Tian, S.B., Pak, Y.S. and Xu, G., “Polyimide-polysiloxane- segmented copolymer as high-temperature polymer electrolytes,” J. Polym. Sci. Polym. Phys., Vol.32, pp.2019-2023, 1994.
[41] Kuckertz, V.H., “Siloxanmodifizierte Polypyromellitimide,” Makromol Chem, Vol.98, pp.101-108, 1966.
[42] Greber, G., “Studies on Silcone-grafted Copolyimides,” Ang Makromol Chem, Vol.4, No.5, pp.212-219, 1968.
[43] St. Clair, A.K., St. Clair, T.L. and Ezzell, S.A., In: Lee, L.H., editor. “Adhesive Chemistry”, Plenum Press, New York, pp.467, 1984,.
[44] Lai, J.Y., Lee, M.H., Chen, S.H. and Shyn, S.S., “Polysiloxaneimide Membranes I. Physical Properties,” Polym. J., Vol.26, pp.1360-1367, 1994.
[45] Chang, T.C. and Wu, K.H., “Characterization and Degradation of some Silicon-Containing Polyimides,” Polymer Degradation and Stability, Vol.60, pp.161-168, 1998.
[46] Chang, T.C., Wu, K.H., Liao, C.L., Lin, S.T. and Wang, G.P., “Thermo-Oxidative Degradationm of Siloxane-containing Polyimide and Unmodified Polyimide,” Polymer Degradation and Stability, Vol.62, pp.299-305, 1998.
[47] Snow, A.W., Sprague, L.G., Soulen, R.L., Grate, J.W. and Wohltjen, H., “Synthesis and Evaluation of Hexafluorodimethylcarbinol Functionalized Polymers as Microsensor Coatings,” Journal of Applied Polymer Science, Vol.43, pp.1659-1671, 1991.
[48] McGill, R.A., Abraham, M.H. and Grate, J.W., “Choosing polymer coatings for chemical sensors,” CHEMTECH, Vol.24, No.9, pp.27-37, 1994.
[49] Grate, J.W., Kaganove, S.N., Patrash, S.J., Craig, R. and Bliss, M., “Hybrid Organic/Inorganic Copolymers with Strogly Hydrogen-Bond Acidic Properties for Acoustic Wave and Optical Sensors,” Chem. Matter., Vol.9, pp.1201-1207, 1997.
[50] Grate, J.W., Patrash, S.J., Kaganove, S.N. and Wise, B.M., “Hydrogen Bond Acidic Polymers for Surface Acoustic Wave Vapor Sensors and Arrays,” Anal. Chem., Vol.71, pp.1033-1040, 1999.
[51] Hoyt, A.E., Ricco, A.J., Yang, H.C. and Crook, R.M., “Speciation of Linear and Branched Hydrocarbons by a fluorinated Polyimide Film-Based Surface Acoustic Wave Sensor,” J. Am. Chem. Soc., Vol.117, pp.8672-8673, 1995.
[52] Tékély, P., Canet, D. and Delpuech, J., “Polyimide-Silica Gel Hybrids Containing Metal Salts: Preparation via the Sol-Gel Reaction,” J. Mol. Phys. Vol.67, pp.81-91, 1989.
[53] Tullos, G.L., Powers, J.M., Jeskey, S.J. and Mathias, L.J., “Thermal Conversion of Hydroxy-Containing Imides to Benzoxazoles: Polymer and Model Compound Stusy,” Macromolecules, Vol.32, pp.3598-3612, 1999.
[54] Turk, M.J., Ansari, A.S., Alston, W.B., Gahn, G.S., Frimer, A.A. and Scheiman, D.A., “Evaluation of the Thermal Oxidative Stability of Polyimides via TGA Techniques,” J. Polym. Sci. Polym. Chem., Vol.37, pp.3943-3956, 1999.
[55] Tian, S.B., Pak, Y.S. and Xu, G., “Polyimide-polysiloxane- segmented copolymer as high-temperature polymer electrolytes,” J. Polym. Sci. Polym. Phys., Vol.32, pp.2019-2023, 1994.
[56] Van Krevelen, D.W., Van Herden. C. and Huntjens, F.J., “Physicochemical aspects of the pyrolysis of coal and related organic compounds,” Fuel, Vol.30, pp. 253-259, 1951.
[57] Soane, D.S. and Martynenko, Z., “Polymers in Microelectronics, Fundamentals and Applications,” Elsevier , Amsterdam, pp.159, 1989.
[58] Ghosh, M.K. and Mittal, K.L., (editors) “POLYMIDE : fundamental and applications,” Marcel Dekker, New York, 1996.
[59] Joly, C., Cerf, D.L., Chappey, C., Langevin, D. and Muller, G., “Residual solvent effect on the permeation properties of fluorinated polyimide films,” Separation and Purification Technology, Vol.16, pp.47-54, 1999.
[60] Kim, J.H., Chang, B.J., Lee, S.B. and Kim, S.Y., “Incorporation effect of fluorinated side group into polyimide membranes on their pervaporation properties,” Journal of Membrane Science, Vol.169, pp.185-196, 2000.
[61] Chen, T.A., Jen, A.K.Y. and Cai, Y., “Facile Approach to Nonlinear Optical Side-Chain Aromatic Polyimides with Large Second-Order Nonlinearity and Thermal Stability,” J. Am. Chem. Soc., Vol.117, pp.7295-7296, 1995.
[62] Trigaud, T., Moliton, J.P., Quillat, M. and Chiron, D., “Thermal assisted ion shrinkage (TAIS) of fluorinated polyimide for optical telecommunication devices,” Opt. Mater., Vol.12, pp.225-228, 1999.
[63] Kim, J.H., Kim, E.J., Choi, E.C., Kim, C.W., Cho, J.H., Lee, Y.W., You, B.G., Yi, S.Y., Lee, H.J., Han, K., Jang, W.H., Rhee, T.H., Lee J.W. and Pearton, S.J. “Evaluation of fluorinated polyimide etching processes for optical waveguide fabrication,” Thin Solid Films, Vol.341, pp.192-195, 1999.
[64] Belfield, K.D., Najjar, O. and Sriram, S.R., “Synthesis of polyurethanes and polyimides for photorefractive application,” Polymer, Vol.41, pp.5011-5020, 2000.
[65] Homma, T., “Fluorinate interlayer dielectric films in ULSI multilevel interconnections,” J. Non-cryst. Solid, Vol.187, pp.49-59, 1995.
[66] Lee, Y.K. and Murarka, S.P., “Characterization of charges in fluorinated polyimide film with different thermal history by using capacitance-voltage methods,” Mater. Research Bull., Vol.34, pp.869-876, 1999.
[67] Ueda, M. and Nakayama, T., “A New Negative-Type Photosensitive Polyimide Based on Poly(hydroxyimide), a Cross-Linker, and a Photoacid Generator,” Macromolecules, Vol.29, pp.6427-6431 1996.
[68] Yu, H.S., Yamashita, T. and Horie, K., “Synthesis and Chemically Amplified Photo-Cross-Linking Reaction of Polyimide Containing an Epoxy Group,” Macromolecules, Vol.29, pp.1144-1150, 1996.
[69] Tullos, G.L. and Mathias, L.J., “Unexpected thermal conversion of hydroxy-containing polyimides to polybenzoxazoles,” Polymer, Vol.40, pp.3463-3468, 1999.
[70] Hoyt, A.E., Ricco, A.J., Yang, H.C. and Crook, R.M., “Speciation of Linear and Branched Hydrocarbons by a fluorinated Polyimide Film-Based Surface Acoustic Wave Sensor,” J. Am. Chem. Soc., Vol.117, pp.8672-8673, 1995.
[71] Sun, H.T., Chen, Z.H., Wlodarski, W. and McCormick, M., “Silica and polyimide coated quartz crystal resonators for analysis of liquids,” Sensors and Actuators B, Vol.35-36, pp.146-153, 1996.
[72] Zheng, X.R., Lai, P.T., Liu, B.Y., Li, B. and Cheng, Y.C., “An integrated PVDF ultrasonic sensor with improved sensitivity using polyimide,” Sensors and Actuators A, Vol.63, pp.147-152, 1997.
[73] Matsuguch, M., Kuroiwa, T., Miyagishi, T., Suzuki, S., Ogura, T. and Sakai, Y., “Stability and reliability of capacitive-type relative humidity sensors using crosslinked polyimide films,” Sensors and Actuators B, Vol.52, pp.53-57, 1998.
[74] Wessa, T., Barie, N., Rapp, M. and Ache, H.J., “Polyimide, a new shielding layer for sensor applications,” Sensors and Actuators B, Vol.53, pp.63-68, 1998.
[75] Grate, J.W., Kaganove, S.N., Patrash, S.J., Craig, R. and Bliss, M., “Hybrid Organic/Inorganic Copolymers with Strogly Hydrogen-Bond Acidic Properties for Acoustic Wave and Optical Sensors,” Chem. Matter., Vol.9, pp.1201-1207, 1997.
[76] Grate, J.W., Patrash, S.J., Kaganove, S.N. and Wise, B.M., “Hydrogen Bond Acidic Polymers for Surface Acoustic Wave Vapor Sensors and Arrays,” Anal. Chem., Vol.71, pp.1033-1040, 1999.
[77] Chang, T.C. and Wu, K.H., “Characterization and degradation of some silicon-containing polyimides,” Polymer Degradation and Stability, Vol.60, pp.161-168, 1998.
[78] Chang, T.C., Wu, K.H. and Chiu, Y.S., “Characterization and degradation of some phosphorus-containing polyimides,” Polymer Degradation and Stability, Vol.63, pp.103-109, 1999.
[79] Kuckertz, V.H., “Siloxanmodifizierte Polypyromellitimide,” Makromol Chem, Vol.98, pp.101-108, 1966.
[80] Clair, A.K.S., Clair, T.L.S. and Shevket, K.I., Polym. Mater. Sci. Eng., Vol.51, pp.61, 1984.
[81] Tékély, P., Canet, D. and Delpuech, J., “Polyimide-Silica Gel Hybrids Containing Metal Salts: Preparation via the Sol-Gel Reaction,” J. Mol. Phys. Vol.67,pp.81-91, 1989.
[82] Mikawa, M., Nagaoka, S. and Kawakami, H., “Gas Transport Properties and Molecular Motions of 6FDA Copolyimides,” Journal of Membrane Science, Vol.163, 167-176, 1999.
[83] Turk, M.J., Ansari, A.S., Alston, W.B., Gahn, G.S., Frimer, A.A. and Scheiman, D.A., “Evaluation of the Thermal Oxidative Stability of Polyimides via TGA Techniques,” J. Polym. Sci. Polym. Chem., Vol.37, pp.3943-3956, 1999.
[84] Molinero, A.L., Martinez, L., Villareal, A. and CastilloJ. R. “Silicon Determination by Inductively Coupled Plasma Atomic Emission Spectrometry after Geration of Volatile Silicon Tetrafluoride,” Talanta. , Vol.45, pp.1211-1217, 1998.
[85] Mark, J.E., Lee, C.Y. and Bianconic, P.A., “Hybrid Organic-Inorganic Composites,” American Chemical Society, ACS Symposium Series 585,Washington DC, 1995.
[86] Loy, D.A. and Shea, K.J. “Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials,” Chem. Rev., Vol.95, pp.1431-1442, 1995.
[87] Wen, G.L., “Organic/Inorganic Hybrid Netwotk Materials by the Sol-Gel Approach,” Chem. Mater., Vol.8, pp.1667-1681, 1996.
[88] Fegar, C., Khojasteh, M.M. and Htoo, M.S., (editors.) “Advances in polyimide science and technology,” Technomic Publishing, New York, 1991.
[89] Ghosh, M.K. and Mittal, K.L., (editors.) “Polyimides: fundamentals and applications,” Marcel Dekker, New York, 1996.
[90] Aoki T., “ Macromolecular design of permselective membranes,” Progress of Polymer Science, Vol.24, pp.951-993, 1999.
[91] Li, Y.F., Ji, T. and Zhang, J., “ Preparation and Properties of Novel Aromatic Polyimides Jacked with Dendritic Fregments,” J. Polym. Sci. Polym. Chem., Vol.38, pp.189-197, 2000.
[92] Liaw, D.J. and Liaw, B.Y., “Synthesis and properties of new polyimides derived from 1,1-bis[4-(4-aminophenoxy)phenyl] cyclododecane” Polymer, Vol.40, pp.3183-3189, 1999.
[93] Kricheldorf, H.R., Wollheim, T., Koning, C.E., Werumeus-Buning H.G., and Altstädt, V., “Thermoplastic elastomers 1 Pol(ether-ester- imide)s based on 1,4-diaminobutane, trimelltic anhydride, 1,4-dihydroxybutane and poly(tetramethylene oxide) diols,” Polymer Vol.42, pp.6699-6708, 2001.
[94] Nakamura, K., Ando, S. and Takeichi, T., “Thermal analysis and solid-state 13C NMR study of crosslink in polyimides containing acetylene groups in the main chain,” Polymer Vol.42, pp.4045-4054, 2001.
[95] Yang, C.P., Chen, R.S. and Hung, K.S., “Synthesis and properties of soluble colorless poly(amide-imide)s based on N,N’-bis(3- carboxyphenyl)-4,4’-oxydiphthalimide and various aromatic diamines,” Polymer, Vol.42, pp.4569-4577, 2001.
[96] Yang, C.P., Chen, R.S. and Chen, J.A., “Preparation and Preperties of New Poly(amide-imide)s Based on 1,4-Bis(4-trimellitimido phenoxy)naphthalene and Aromatic Diamines,” J. Polym. Sci. Polym. Chem., Vol.38, pp.1-8, 2000.
[97] Lee, Y.B., Park, H.B., Shim, J.K. and Lee, Y.M., “Synthesis and Characterization of Polyamideimide-Branched Siloxane and Its Gas-Separation,” Journal of Applied Polymer Science, Vol.74, pp.965-973, 1999.
[98] Hsiao, S.H. and Chang, L.M., “Synthesis and Properties of Poly(imide-hydrazide)s N-[p-(or m-)Carboxyphenyl]trimellitimide and Aromatic Dihydrazides or p-Aminobenzhydrazide via the Phosphorylation Reaction,” J. Polym. Sci. Polym. Chem., Vol.38, pp.1599-1608, 2000.
[99] Tamai, S., Ohkawa, Y. and Yamaguchi, A., “Aromatic thermotropic liquid crystalline polymer from 1,3-bis[4-(4-aminophenoxy)-,- dimethylbenzyl]benzene,” Polymer, Vol.38, pp.4079-4084, 1997.
[100] Kim, H.K., Moon, I.K., Lee, H.J., Han, S.G. and Won, Y.H., “Second-order NLO polyamideimides based on functionalized stilbene derivatives: direct polycondensation and characterization,” Polymer Vol.39, pp.1719-1726, 1998.
[101] Xu, Z.K., Böhning, M., Springer, J., Steinhauser, N. and Mülhaupt, R., “Gas transport properties of highly fluorinated polyamideimides,” Polymer Vol.38, pp.581-588, 1997.
[102] Ha, S.Y., Park, H.H. and Lee, Y.M., “Percolational Effect of Siloxane Content in poly(amideimide siloxane) on the Gas Permeation Behavior,” Macromolecules Vol.32, pp.2394-2396, 1999.
[103] Lee, Y.B., Park, H.B., Shim, J.K. and Lee, Y.M., “Synthesis and Characterization of Polyamideimide-Branched Siloxane and Its Gas-Separation,” Journal of Applied Polymer Science, Vol.74, pp.965-973, 1999.
[104] Hu, Q., Marand, E., Dhingra, S., Fritsch, D., Wen, J. and Wilkes, G., “Poly(amide-imide)/TiO2 Nano-Composite Gas Separation Membranes:Fabrication and Characterization,” Journal of Membrane Science, Vol.135, pp.65-79, 1997.
[105] Hu, Q. and Marand, E., “In Situ Formation of Nanosized TiO2 Domains within Poly(Amide-Imide) by a Sol-Gel Process,” Polymer, Vol.40, pp.4833-4843, 1999.
[106] Kim, J.H., Kim, E.J., Choi, E.C., Kim, C.W., Cho, J.H., Lee, Y.W., You, B.G., Yi, S.Y., Lee, H.J., Han, K., Jang, W.H., Rhee, T.H., Lee J.W. and Pearton, S.J. “Evaluation of fluorinated polyimide etching processes for optical waveguide fabrication,” Thin Solid Films, Vol.341, pp.192-195, 1999.
[107] Chan, C.K., and Chu, I.M. “Phase behavior and molecular chain environment of organic-inorganic hybrid materials based on poly(n-butyl methacrylate-co-(3-(methacryloxypropyl)) trimethoxy- silane),” Polymer, Vol.42, pp.6823-6831, 2001.
[108] Wang, J., Cheung, M.K. and Mi, Y., “Miscibility of poly(ethyl oxazoline)/poly(4-vinylphenol) blends as investigated by the high-resolution solid-state 13C NMR,” Polymer, Vol.42, pp.2077- 2083, 2001.
[109] Lin, R.H., Woo, E.M. and Chiang, J.C., “A solid-state 13C NMR study on phase heterogeneity in the miscible blend of amphous poly(benzyl methacrylate) with semicrystalline poly(ethylene oxide),” Polymer, Vol.42, pp.4289-4297, 2001.
[110] Nakaoki, T., Ohira, Y. and Horii, F., “Investigation of the crystallization process of syndiotactic polypropylene quenched at 0 oC from the melt or concentrated solutions by solid-state 13C NMR spectroscopy,” Polymer, Vol.42, pp.4555-4561, 2001.
[111] Brus, J. and Dybal, J., “Solid-state NMR syudy of structure, size and dynamics of domains in hybrid siloxane networks,” Polymer, Vol.42, pp.5269-5282, 2001.
[112] Hou, S.S. and Kuo, P.L., “Morphological, thermal and solid-state NMR study on a novel PMMA/crosslinked silicone semi-IPN,” Polymer, Vol.42, pp.9505-9511, 2001.
[113] Yi, J.Z. and Goh, S.H., “Miscibility of poly(methacrylic acid)/poly(4-vinylpryidine) blends and complexes investigated by high-resolution solid-state 13C NMR,” Polymer, Vol.42, pp.9313-9316, 2001.
[114] Mikawa, M., Nagaoka, S. and Kawakami, H., “Gas Transport Properties and Molecular Motions of 6FDA Copolyimides,” Journal of Membrane Science, Vol.163, pp.167-176, 1999.
[115] Chang, T.C., Wang, G.P., Tsai, H.C., Hong, Y.S. and Chiu, Y.S., “Organic-Inorganic Hybrid Materials XI. Characterization and Degradation of Hydrogen-Bond Acidic Fluorinated Poly(Siloxane- Amideimide-Silica) Hybrids,” Polymer Degradation and Stability, Vol.74, No.2, pp229-237, 2001.
[116] Chang, T.C., Wang, G.P., Tsai, H.C., Hong, Y.S. and Chiu, Y.S., “Organic-Inorganic Hybrid Materials X. Characterization and Degradation of Hydroxyl-Containing Fluorinated Polyimide-Silica Hybrids,” International Journal of Polymer Analysis and Charactdrization, in press, 2002.
[117] Glaser, R.H. and Wilkes, G.L., “Structure Property Behavior of Polydimethylsiloxane and Poly(Tetramethylene Oxide) Modified TEOS Based Sol-gel Materials V. Effect of Titaninmisopropoxide Incorporation,” Polym Bull, Vol. 19, pp.51-57, 1988.
[118] Ahn, T.K., Kim, M. and Choe, S., “HydrogenBonding Strength in the Blends of Polybenzimidazole with BTDA and DSDABased Polyimides,” Macromolecules, Vol. 30, No. 11, pp.3369-3374, 1997.
[119] Avadhani, C.V. and Chujo, Y., “PolyimideSilica Gel Hybrids Containing Metal Salts: Preparation via the SolGel Reaction,” Appl. Organometal. Chem., Vol.11, No.2, pp.153, 1997.
[120] Smaihi, M., Schrotter, J.C., Lesimple, C., Prevost, I. and Guizard, C., “Gas Separation Properties of Hybrid Imide-Siloxane Copolymers with Various Silica Contents,” Journal of Membrane Science, Vol. 161, pp. 157-170, 1999.
[121] Wu, K.H., Chang, T.C., Wang, Y.T., and Chiu, Y.S., “Organic-Inorganic Hybrid Materials. I. Characterization and Degradation of Poly(imide-silica) Hybrids,” J. Polym. Sci. Polym. Chem., Vol.37, pp.2275-2284, 1999.
[122] Mehring, M., “Principles of High Resolution NMR in Solids,” 2nd ed., Springer, Berlin, 1983.
[123] Gijsman, P., Tummers, D. and Janssen, K., “Differences and similarities in the thermooxidative degradation of polyamide 46 and 66,” Polymer Degradation and Stability, Vol.49, pp.121-125, 1995.
[124] Janssen, K., Gijsman, P. and Tummers, D., “Mechanistic aspects of the stabilization of polyamides by combinations of metal and halogen salts,” Polymer Degradation and Stability, Vol.49, pp.127-133, 1995.
[125] Li, R. and Hu, X., “Study on discoloration mechanism of polyamide 6 during thermo-oxidative degradation,” Polymer Degradation and Stability, Vol.62, pp.523-528, 1998.
[126] Bockhorn, H., Hornung, A., Hornung, U. and Weichmann, J., “Kinetic study on non-catalysed degradation of polyamide 6 with isothermal and dynamic methods,” Thermochimica Acta, Vol.337, pp.97-110, 1999.
[127] Steckenreiter, T., Balanzat, E., Fuess, H. and Trautmann, C., “Pyrolytic effects induced by energetic ions in polymers,” Nucl. Instr. and Meth. in Phys. Res. B, Vol.151, pp.161-168, 1999.
[128] Torrecillas, R., Regnier, N. and Mortaigne, B., “Thermal degradation of bismaleimide and bisnadimide networks-products of thermal degradayion and type of crosslinking points,” Polymer Degradation and Stability, Vol.51, pp.307-318, 1996.
[129] Régnier, N., Berriot, J., Lafontaine, E. and Mortaigne, B., “Spectromechanical analysis of the structure and oxidation of PMR thermoset thermally-stable resins,” Polymer Degradation and Stability, Vol.73, pp.485-490, 2001.
[130] Popov-Pergal, K., Pergal, M., Babić, D., Marinović-Cincović, M. and Jovanović, R., “Thermal, oxidative and radiation stability of polyimides I. Bismaleimidoethane and different diamine-based polyimides” Polymer Degradation and Stability, Vol.67, pp.547-552, 2000.
[131] Turk, M.J., Ansari, A.S., Alston, W.B., Gahn, G.S., Frimer, A.A. and Scheiman, D.A., “Evaluation of the thermal Oxidative Stability of Polyimides via TGA Techniques,” J. Polym. Sci. Polym. Chem., Vol.37, pp.3943-3956, 1999.
[132] Xie, W., Pan, W.P. and Chuang, K.C., “Thermal characterization of PMR polyimides,” Thermochimica Acta, Vol.367-368, pp.143-153, 2001.
[133] Ghosh, S., Khastgir, D., Bhowmick, A.K. and Mukunda, P.G., “Thermal degradation and ageing of segmented polyamides,” Polymer Degradation and Stability, Vol.67, pp.427-436, 2000.
[134] Vieira, I., Severgnini, V.L.S., Mazera, D.J., Soldi, M.S., Pinheiro, E.A., Pires, A.T.N. and Soldi, V., “Effects of maleated ethylene propylene diene rubber (EPDM) on the thermal stability of pure polyamide/EPDM and polyamide/poly(ethylene terephthalate) blends: kinetic parameters and reaction mechanism,” Polymer Degradation and Stability, Vol.74, pp.151-157, 2001.
[135] Pramoda, K.P., Chung, T.S., Liu, S.L., Oikawa, H. and Yamaguchi, A., “Characterization and thermal degradation of polyimide and polyamide liquid crystalline polymers,” Polymer Degradation and Stability, Vol.67, pp.365-374, 2000.
[136] Ghosh, M.K. and Mittal, K.L., editors. “Polyimides: fundamentals and applications,” Marcel Dekker, New York, 1996.
[137] Yang, C.P., Chen, R.S. and Hung, K.S., “Synthesis and properties of soluble colorless poly(amide-imide)s based on N,N’-bis(3- carboxyphenyl)-4,4’-oxydiphthalimide and various aromatic diamines,” Polymer, Vol.42, pp.4569-4577, 2001.
[138] Yang, C.P., Chen, R.S. and Chen, J.A., “Preparation and Preperties of New Poly(amide-imide)s Based on 1,4-Bis(4-trimellitimido phenoxy)naphthalene and Aromatic Diamines,” J. Polym. Sci. Polym. Chem., Vol.38, pp.1-8, 2000.
[139] Hsiao, S.H. and Chang, L.M., “Synthesis and Properties of Poly(imide-hydrazide)s N-[p-(or m-)Carboxyphenyl]trimellitimide and Aromatic Dihydrazides or p-Aminobenzhydrazide via the Phosphorylation Reaction,” J. Polym. Sci. Polym. Chem., Vol.38, pp.1599-1608, 2000.
[140] Mark, J.E., Lee, C.Y., and Bianconic, P.A., “Hybrid Organic-Inorganic Composites,” American Chemical Society, ACS Symposium Series 585,Washington DC, 1995.
[141] Loy, D.A. and Shea, K.J., “Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials,” Chem. Rev., Vol.95, pp.1431-1442, 1995.
[142] Wen, G.L., “Organic/Inorganic Hybrid Netwotk Materials by the Sol-Gel Approach,” Chem. Mater., Vol.8, pp.1667-1681, 1996.
[143] Hu, Q. and Marand, E., “In Situ Formation of Nanosized TiO2 Domains within Poly(Amide-Imide) by a Sol-Gel Process,” Polymer, Vol.40, pp.4833-4843, 1999.
[144] Hu, Q., Marand, E., Dhingra, S., Fritsch, D., Wen, J. and Wilkes, G., “Poly(amide-imide)/TiO2 Nano-Composite Gas Separation Membranes:Fabrication and Characterization,” Journal of Membrane Science, Vol.135, pp.65-79, 1997.
[145] Wang, G.P., Chang, T.C., Hong, Y.S. and Chiu, Y.S., “Dynamics of novel hydrogen-bonded acidic fluorinated poly(amide- imide-silica) hybrids studied by solid-state NMR,” Polymer, Vol.43, No.8, pp2191-2200, 2002.
[146] Woo, L., Khare, A.K., Blom, H.P., Standford, C. and Ding, S.Y., “Application of the oxidative induction test to depolymerizing systems,” Thermochimica Acta, Vol. 367-368 pp.113-118, 2001.
[147] Phease, T.L., Billingham, N.C. and Bigger, S.W., “The effect of carbon black on the oxidative induction time of medium-density polyethylene,” Polymer, Vol. 41 pp. 9123-9130, 2000.
[148] Kyriakou, S.A., Statherpoulos, M., Parissakis, G.K., Papaspyrides, C.D. and Kartalis, C.N., “Oxidative induction time method based on thermogravimetry for monitoring the restabilization of post-use LDPE,” Polymer Degradation and Stability, Vol.66, pp.49-53, 1999.
[149] Wu, K.H., Chang, T.C., Wang, Y.T., and Chiu, Y.S., “Organic-Inorganic Hybrid Materials. I. Characterization and Degradation of Poly(imide-silica) Hybrids,” J. Polym. Sci. Polym. Chem., Vol.37, pp.2275-2284, 1999.
[150] Sui, Y., Liu, Y.G., Yin, J., Gao, J., Zhu, Z.K., Huang, D.Y. and Wang, Z.G., “Study on Side-Chain Second-Order Nonlinear Optical Polyimide Based on Novel Chromophore-Containing Diamines. I. Synthesis and Characterization,” J. Polym. Sci. Polym. Chem., Vol.37, pp.4330-4336, 1999.
[151] Soane, D.S. and Martynenko, Z., “Polymers in Microelectronics Fundamental and Applications” Elsevier, Amsterdam, pp.159, 1989.
[152] Lin, S.T. and Huang, S.K., “THERMAL DEGRADATION STUDY OF SILOXANE-DGEBA EPOXY COPOLYMERS,” Eur. Polym. J., Vol.33, pp.365-373, 1997.
[153] Aoki T. “ Macromolecular design of permselective membranes,” Progress of Polymer Science, Vol.24, pp.951-993, 1999.
[154] 蔡惠娟,”含氟聚(矽氧烷-醯胺-亞醯胺)-矽石混成材料之研究”,國防大學中正理工學院應化所碩士論文,2001。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top