跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 12:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜彬湧
研究生(外文):Ping-Yung Tu
論文名稱:壓電式微型噴油泵浦之設計、製作與性能探討
論文名稱(外文):Design、Fabrication and Performance Study Piezoelectric Micropump for Fuel Atomizer
指導教授:鄭友仁
指導教授(外文):Yeau-Ren Jeng
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:84
中文關鍵詞:燃油霧化壓電微機電微泵浦
外文關鍵詞:Fuel AtomizerPiezoelectricMEMSMicropump
相關次數:
  • 被引用被引用:3
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
環境與能源問題在現今全球化的風潮下,業已是全體人類必須共同面對的嚴肅課題,運輸工具更是環境污染與能源消耗的主要因素。就機車而言,所產生的等效油耗及污染皆較汽車高,主要在於機車引擎所使用的供油系統化油器,無法根據引擎運轉作適當的油氣混合與供給。因此本研究以設計一個低成本、可控制的微型噴油泵浦,作為機車引擎的供油系統,取代化油器達成低污染、省油的目標。更能廣泛應用於微流體系統和液體霧化上。
本研究設計以雙膜式壓電片作為致動器,利用壓電片在流道中作動擠壓液體,使液體產生局部高壓透過陣列式微噴嘴將液體噴出,並因壓電片高頻率的擺動使液體能產生霧化。同時利用紫外光雷射加工、微放電加工與矽基微細加工等微機電加工技術製作出陣列式微噴嘴,並組裝出原型機作為實驗用。而本研究所設計製作之壓電式微泵浦僅需數十伏的電壓、小於1W的能量與4∼20 kHz的操作頻率,便能將燃油霧化。根據設計參數的實驗,可得到霧化量隨著電壓、噴孔的孔徑與錐角角度的加大而增加,並利用不同頻率範圍具有不同流量的性質,對微泵浦的流量作控制。
Environment and energy conservation are compelling issues of today. Transportation is a principal cause of environmental pollution and energy consumption. Due to the use of carburetor in motorcycle engines for fuel supply, injection timings cannot precisely controlled to match engine operation of conditions. This study is aimed to design and fabricate a low cost; high precision micropump for fuel atomizer. The design of micropump can also be used for other applications such as lubrication systems.
In this study, an actuator using bimorph type of piezoelectric sheet was developed. The piezoelectric sheet compressed fluid in fluid chamber and generated localized pressure to spray through array of micro nozzles. High frequency oscillations create fluid atomization. UV laser machining, micro electro discharge machining, and silicon micromachining was used to fabricate array of micro nozzles. The developed piezoelectric micropump can be operated with frequency at 4~20 kHz with less than 1 watt energy and 10~20 voltage. Performance investigation shows that the amount flow rate increases with increasing voltage, bore diameter and angle of cone hole of nozzle. The results also show that changing the frequency of piezoelectric sheet can generate different flow characteristic. This phenomenon can be used for flow rate control.
摘要…….…………………………………………………….………… I
Abstract…….………………………………………………….…………II
目錄…………………………………………………………….……… III
圖目錄………………………………………………………….….……VI
表目錄………………………………………………………….………XI
第1章 緒論…………………………………………………….……….1
    1.1前言………………………………………………….………1
    1.2研究動機………………………………………….…………2
    1.3文獻與技術回顧………………………………….…………7
1.3.1 噴墨頭技術……………………………….………….7
1.3.2 微泵浦技術…………………………………………13
第2章 壓電致動器…………………………………………………....19
2.1 壓電效應…………………………………………………..19
2.1.1 壓電方程式…………………………………………21
2.2 壓電材料的選擇與選用…………………………………..22
    2.3 壓電致動器之介紹………………………………………..25
2.3.1 PZT壓電致動器之優缺點………………………….26
第3章 微泵浦的設計與製作………………………………………....29
    3.1 微泵浦概念設計…………………………………………..29
    3.2 微泵浦的製作……………………………………………..31
3.2.1 陣列式微噴嘴片的製作與設計……………………32
      一. 紫外光雷射鑽孔………………………………..33
     二. 微放電加工……………………………………..37
三. 矽基體型微加工………………………………..39
3.2.2 雙膜式壓電致動器…………………………………45
3.2.3 流道結構……………………………………………46
第4章 實驗與量測設備………………………………………………48
4.1 壓電致動器的量測………………………………………..48
4.2 微泵浦特性量測…………………………………………..49
4.3 微泵浦實驗參數設計……………………………………..55
第5章 參數與性能探討………………………………………………59
5.1 壓電致動器位移量測結果………………………………..59
5.2 操作電壓與流量關係……………………………………..61
5.3 流道間距與流量關係……………………………………..62
5.3.1 液體阻尼效應對液體噴射之影響………...………62
5.3.2 緩衝腔腔體深度對液體噴射之影響...……………64
5.3.3 壓電板與噴孔間距對液體噴射之影響...…………65
5.4 噴孔型式與流量關係……………………………………..66
5.5 微泵浦霧化觀測…………………………………………..68
第6章 結論與未來發展………………………………………………79
參考文獻……………………………………………………………….82
1. 交通統計月報集交通部統計資訊服務網.
2. H. Le, “Ink Jet Printing,” Tutorial presented at IS&T's Tenth International Congress on Advances in Non-Impact Printing Technologies. Oct. 30, 1994.
3. Angad Singh, Mehran Mehregany, Stephen M. Phillips, Rex J. Harvey, and Michael Benjamin, “Micromachined Silicon Fuel Atomizers for Gas Turbine Engines, ” IEEE pp.473-478, 1996.
4. S. Baik, S. Kang, J. Blanchard, and M.Corradini, “Development of Micro-Diesel Injector Nozzles via MEMS Technology and Initial Results for Diesel Sprays, ” SAE Technical Paper, No. 1999-01-3645 (1999).
5. S. Baik, S. Kang, J. Blanchard, and M. Corradini, “Development of Micro-Diesel Injector Nozzles via MEMS Technology and Effects on Spray Characteristics, ” Eighth International Conference on Liquid Atomization and Spray Systems, Pasadena, CA, USA, July 2000 (2000).
6. N. Rajan, C. Zorman, M. Mehregany, R. DeAnna, and R. Harvey, “3C-Sic Coating of Silicon Micromachined Atomizers, ” 0-7803-3744-1/97, 1997 IEEE (1997).
7. N. Rajan, M. Mehregany, and C. A. Zorman, “Fabrication and Testing of Micromachined Silicon Carbide and Nickel Fuel Atomizers for Gas Turbine Engines, ” 1057-7157/99, 1999 IEEE (1999).
8. Carl D. Meinhart and Hongsheng Zhang, “The Flow Structure Inside a Microfabricated Inkjet Printhead, ” J. Microelectromechanical Systems, VOL. 9, NO. 1, MARCH 2000.
9. Ph. Luginbuhl, P.-F. Indermuhle, M.-A. Gretillat, F. Willemin, N.F. de Rooij, D. Gerber, G. Gervasio, J.-L. Vuilleumier, D. Twerenbold, M. Duggelin, D. Mathys, R. Guggenheim, “Femtoliter Injector for DNA Mass Spectrometry, ” Sensors and Actuators B 63, pp.167-177, 2000.
10. S. Kameyama, H. Fukumoto, T. Kimura, and S.wadaka, “Ink Mist Jet Generation Using Low Frequency Focused Ultrasonic Wave and Nozzle, ” IEEE Ultrasonics Symposium pp.695-698, 1999.
11. Dai Huang and Eun Sok Kim, “Micromachined Acoustic-Wave Liquid Ejector, ” J. Microelectromechanical system, Vol. 10, NO.3, Sep 2001.
12. Sebastian Bohm , Wouter Olthuis, Piet Bergveld, “A Plastic Micropump Constructed with Conventional Techniques and Materials, ” Sensors and Actuators 77, pp.223-228, 1999.
13. R. Linnemann, P. woias, C.-D. Senfft, and J. A. Ditterich, “A Self-Priming and Bubble-Tolerant Piezoelectric Silicon Micropump for Liquids and Gases, ” IEEE, pp.532-537, 1998.
14. Ingo Ederer, Josef Grasegger, Carsten Tille, “Droplet Generator with Extraordinary High Flow Rate and Wide Operating Range, ” IEEE, pp.809-812, 1997.
15. Helene Anderssona, Wouter van der Wijngaarta, Peter Nilssonb, Peter Enokssona, Göran Stemme, “A Valve-Less Diffuser Micropump for Microfuidic Analytical Systems, ” Sensors and Actuators, B 72, pp.259-265, 2001.
16. Jung-Ho Park, Kazuhiro Yoshida, Shinichi Yokota, “Resonantly Driven Piezoelectric Micropump Fabrication of a Micropump Having High Power Density, ” Mechatronics 9, pp.687-702, 1999.
17. Amit Lal and Richard M. White, “Micromachined Silicon Ultrasonic Atomizers, ” IEEE Ultrasonics Symposium pp.339-342, 1996.
18. A. Olsson, P. Enoksson, G. Stemme, E. Stemme, “Micromachined Flatwalled Valve-Less Diffuser Pumps, ” J. Microelectromech. Syst. 6 (1997) pp.161-166.
19. W. van der Wijngaart, H. Andersson, P. Enoksson, G. Stemme, “The First Self-Priming and Bi-Directional Valve-Less Diffuser Micropump for Both Liquid and Gas, ” in Proceedings of the The Thirteenth Annual International Conference on Microelectromechanical Systems, MEMS 2000, Miyazaki, Japan, 23 January, 2000, pp. 674-679.
20. 吳朗, “電子陶瓷:壓電”, 全欣資訊, 1994.
21. 莊達人, “VLSI製造技術”,高立圖書,1996.
22. Madou M. , “Fundamental of Microfabrication, ”CRC Press, 1997. New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊