跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/22 23:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:袁偉翔
論文名稱:3-PRS並聯式機構之動態建模與控制器設計
論文名稱(外文):Dynamic Formulation and Controller Design of a Novel 3-PRS Parallel Manipulator
指導教授:蔡孟勳蔡孟勳引用關係
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:92
中文關鍵詞:並聯式機構順向運動學逆向運動學拉格朗因子逆向動力學分析順向動力學分析PID控制器設計干擾估測器設計
外文關鍵詞:parallel manipulatorforward kinematicsinverse kinematicsLagrange multiplierinverse dynamics analysisforward dynamics analysisPID controllers designDisturbance observer
相關次數:
  • 被引用被引用:6
  • 點閱點閱:474
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於並聯式工具機工作空間的限制,工研院(ITRI)發展出一個結合3-PRS (3-Prismatic-Revolute-Spherical) 並聯式機構與傳統X-Y平台的新型工具機。此3-PRS並聯式機構能夠提供刀具快速與高精度的切削;而X-Y平台則用以改善工作空間限制的問題。
本論文主要針對此3-PRS並聯式機構進行研究。有關此並聯式機構的一些基礎分析,如:自由度分析、各桿件位置分析及順逆向運動學分析由於在文獻上已經有相關的研究發表。因此,本文僅將其重點在論文一開始作一個重點性的陳述,以期讀者能有一個整體性的了解。本論文主要的研究焦點在於推導此並聯式機構的動態方程式與控制器的設計。
本文採用能量法(Lagrange approach)來推導動態方程。由於存在運動學上的拘束條件,在推導動態方程的過程中,我們引入了Lagrange multipliers以解決此問題。推導出的動態方程式共包含六個非線性的微分方程與三個代數的拘束條件方程式。從逆向動力學的分析中,此推導出的動態方程式得到初步的驗證。在順向動力的模擬分析上,我們進一步結合了此3-PRS並聯式機構的動態與驅動馬達機械部的動態。此外,由於推導出的動態方程中有代數的拘束條件方程式。因此,拘束條件方程式必須作一個適當的變形以利電腦的模擬。
在控制器的設計上,我們從各軸獨立控制(decentralized joint control) 的觀點出發,分析PID控制器的可行性。從模擬的結果發現,雖然並聯式機構的動態方程非常複雜,如果和驅動馬達間的動態耦合效應不大,則PID控制器仍然能夠有效運作。為了進一步提高控制器的性能,我們採用干擾估測器以線上補償平台作用在驅動馬達上的動態負載、外來干擾與系統參數的不確定性。我們分析了文獻上兩種干擾估測器,一是利用inverse model;一是利用估測速度的誤差值來線上觀測干擾。最後,我們進一步分析在文獻上結合可變結構控制與干擾估測器的架構,發現此架構並不能提高干擾估測器估測干擾的性能。
A novel machine tool composed of a 3-PRS (3-Prismatic-Revolute-Spherical) parallel manipulator and X-Y table was designed by the Industry Technology Research Institute (ITRI) in Taiwan. The X-Y table is used to achieve large working space, while the parallel 3-PRS mechanisms is designed to achieve high-precision and high-speed performances.
In this thesis, fundamental analyses on the 3-PRS mechanism such as degrees of freedom, position analysis, inverse and forward kinematics problems are performed first. The dynamic equation of the 3-PRS mechanism is formulated based on Lagrange approach. Due to the kinematics constraints, three Lagrange multipliers are introduced. The forward dynamic analysis is performed to understand the characteristics of the 3-PRS mechanism. Because the resultant dynamic equations consists of nonlinear differential equations and algebraic constraint equations, some modification on the constraint equations must be carried out for computer simulation.
As for the controller design, a PID controller based on the concept of decentralized joint control is first analyzed. It is found that although the 3-PRS parallel manipulator is highly nonlinear and with complicated dynamic equations, the PID controller still works if the coupling between the servo actuator and the parallel manipulator is small. To improve the system performance, a disturbance observer is adopted to perform better disturbance rejection and to achieve system robustness when the system is subjected to parameter variation. Two different kinds of disturbance observers are analyzed. One is based on the concept of inverse model while the other uses predicted velocity error to on-line observe the disturbance. These two types are proved to be identical from the point of view of transfer function. Also the integration of the disturbance observer with variable-structure control technique is analyzed.
CONTENTS
LIST OF FIGURES
LIST OF TABLES
Chapter 1 Introduction1
1-1 Preface
1-2 Motivation and objectives
1-3 Literature review
1-4 Contribution of the thesis
1-5 Organization of the thesis
Chapter 2 Analysis of degrees of freedom and inverse kinematics problems
2-1 Analysis of degrees of freedom
2-2 Position analysis
2-3 Inverse kinematics
2-3-1 Case study
Chapter 3 Lagrangian approach to the dynamic modeling of the 3-PRS parallel mechanism
3-1 The direct kinematics problem of the 3-PRS mechanism
3-2 Derivation of the dynamic equation
3-2-1 Derivation of the kinetic and potential energy of the 3-PRS mechanism
3-2-2 Lagrange formulation
3-3 Inverse dynamics analysis
3-4 Summary
Chapter 4 Analysis of forward dynamics
4-1 The mechanical dynamics of actuators
4-2 Forward dynamics analysis
4-3 Summary
Chapter 5 Analysis and design of PID controllers
5-1 P-I and I-P types of velocity controllers
5-2-1 Analysis of controller parameters in velocity loop
5-2-2 Analysis of controller parameter in position loop
5-2-3 Analysis of feed-forward compensation of velocity loop
5-2-4 Case study of designing PID controller
5-3 Summary
Chapter 6 Design of disturbance observer
6-1 Disturbance observer based on the concept of inverse model
6-2 Disturbance observer based on the prediction error of velocity
Appendixes
Chapter 7 Conclusion and future work
References
[1] D. Stewart, 1965, “A platform with six degrees of freedom, Proceedings of the Institute of Mechanical Engineering”, Vol. 180, No.5, pp 371-386.
[2] E. F. Fichter, 1968, A Stewart platform-based manipulator: General theory and practical construction, International Journal of Robotics Research, Vol. 5, No. 2, pp. 157-182.
[3] D. M. Ku, 1999, “Direct displacement analysis of a Stewart platform mechanism”, Mechanism and Machine Theory Vol. 34, pp. 453-465.
[4] T. H. Chang, I. Inasaki, K. Morihara, and J. J. Hsu, 2000, “The development of a parallel mechanism of 5 d.o.f. hybrid machine tool,”, Y2000 Parallel Kinematic Machines International Conference, Ann Arbor, Mi. USA.
[5] J. A. Carretero, R. P. Podhorodeski, M. A. Nahon, and C. M. Gosselin, 2000, “Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator”, ASME Journal Mechanical Design Vol. 122, No.1, pp 17-24.
[6] M. S. Tsai, T. N. Shiau, Y. J. Tsai, and T. H. Chang, 2002, “Direct kinematic analysis of a 3-PRS serial/parallel mechanism, accepted by Mechanism and Machine theory.
[7] B. Dasgupta and P. Choudhury, 1999, “ A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators”, Mechanism and Machine Theory, Vol. 34 pp. 801-824.
[8] W. Q. D. Do and D. C. H. Yang, 1988, “ Inverse dynamic analysis and simulation of a platform type of robot,” Journal of Robotic Systems, Vol. 5, No. 3, pp. 209-227.
[9] P. Guglielmetti, and R. Longchamp, 1994, “ A closed form inverse dynamics model of the Delta parallel Robot”, Proc. International Federation of Automatic Control Conference on Robot Control, (1994) 39-44.
[10] K. M. Lee and D. K. Shah, 1988, “Dynamic analysis of a three-degrees-of-freedom in-parallel actuated manipulators,” IEEE Journal of Robotics and Automation, vol. 4, no.3 .
[11] J. D. Lee and Z. Geng, 1993, “A dynamic model of a flexible Stewart platform”, Computers & Structures, vol. 48, no. 3 pp. 367-374.
[12] G. Lebret, K. Liu, and F. L. Lewis, 1993, “Dynamic analysis and control of a Stewart platform manipulator”, Journal of Robotic Systems, vol. 10, no. 5, (1993) 629-655.
[13] H. Pang, and M. Shahingpoor, 1994, “Inverse dynamics of a parallel manipulator”, Journal of Robotic Systems, vol. 11, no. 8, pp. 693-702.
[14] K. Miller and R. Clavel, 1992, “The Lagrange-Based model of Delta-4 Robot dynamics”, Robotersysteme, vol. 8, pp. 49-54.
[15] S. L. Chen, T. H. Chang, and I. G. Chang, 2000, “Dynamic analysis and modeling of hybrid TRR-XY parallel kinematic machine”, Proceedings of the 17th National Conference on Mechanical Engineering, pp. 683-690.
[16] Nguyen, C. C., Antrazi, S. S. and Zhou, Z. L.1993 “Adaptive Control of a Stewart Platform-Based Manipulator”, Journal of Robotic Systems, vol. 10, n5, Jul.
[17] M. Nakao, K. Ohnishi and K. Miyachi, “ A Robust Decentralized Joint Control Based on Interference Estimation ”, Proc. of IEEE Int. Conf. On Robotics and Automation, Vol.1, pp.326-331, 1987.
[18] T. Umeno, T. Kaneko and Y. Hori, ”Robust Servosystem Design with Two Degrees of Freedom and its Application to Novel Motion Control of Robot Manipulators”, IEEE Transactions on Industrial Electronics,Vol. 40, No.5,October 1993
[19] H. S. Lee and M. Tomizuka,” Robust Motion Controller Design for High-Accuracy Positioning Systems”, IEEE Transactions on Industrial Electronics, Vol.43, No.1,February 1996.
[20] B.Yao, M.AL-Majed, and M. Tomizuka, ”High-Performance Robust Motion Control of Machine Tools: An Adaptive Robust Control Approach and Comparative Experiments”, IEEE/ASME Transactions on Mechatronics, Vol.2, No.2,June 1997.
[21] K. Sakamoto, S. Matsubara, and Y. Iwashita, “High-Precision Digital Servo Control ~FANUC Control Motor series”, FANUC Tech. Rev., 4, 1, pp33-40, Jan. 1991.
[22] H. N. Lin and Y. Kuroe, “ Decoupling Control of Robot Manipulators by Using Variable-Structure Disturbance observer”, IEEE, 1995.
[23] B. K. Kim, W. K. Chung, Y. Youm, “Robust Learning Control for Robot Manipulators Based on Disturbance Observer”, IEEE, 1996.
[24] J. J. Lee, J. H. Lee, J. S. Ko and M. J. Youn, “ Design of Efficient Sliding Mode Controller for Robot Manipulator Using Disturbance Observer”, Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, France-May 1992.
[25] L. W. Tsai, 1999, Robot Analysis-The Mechanics of Serial and Parallel Manipulators, John Wiley & Sons.
[26] E. J. Haug, 1992, Intermediate Dynamics, Prentice-Hall, Englewood Cliffs.
[27] N.I. Kim, C.W. Lee, and P.H. Chang, 1998, “Sliding mode control with perturbation estimation: application to motion control of parallel manipulator”, Control Engineering Practice, pp. 1321-1330.
[28] 鄭信恩, “CNC工具機動態精度的分析與改善”, 碩士論文, 國立台灣工業技術學院, 工程技術研究所機械工程技術學程。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top