跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/05 21:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施慶和
研究生(外文):Keng-Hua Shi
論文名稱:黎曼流型上的調和函數理論的探討
論文名稱(外文):Report on Harmonic Functions of Polynomial Growth on Riemannian Manifolds
指導教授:褚孫錦
指導教授(外文):Sun-Chin Chu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:應用數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:34
中文關鍵詞:黎曼流型調和函數多項式成長
外文關鍵詞:Riemannian ManifoldHarmonic FunctionPolynomial Growth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇報告裡, 我們探討在黎曼流型上多項式成長的調和函數理論, 其中主要內容著重於在非負Ricci曲率的完備黎曼流型上, 上述空間維度的估計問題. 這個問題源於1975年, 當S.T.Yau證明了在非負Ricci曲率的完備黎曼流型上, 所有非負的調和函數必為常數函數. Yau提出了一個猜想, 他認為在這種非負Ricci曲率的完備黎曼流型上, 多項式成長的調和函數空間為有限維度. 在一系列的論文中, Colding和Minicozzi證明了該猜想, 而且他們的結果更超越了Yau的猜想. 在這之後, P.Li和J.P.Wang做出了更進一步的結果.

In this report, we study the harmonic functions of polynomial growth on Riemannian manifolds, especially focus on estimate of the dimension of such spaces on complete Riemannian manifolds with non-negative Ricci curvature. This subject began in 1975, when S. T. Yau proved the strong Liouville property on complete manifolds with non-negative Ricci curvature. Yau conjectured that the space of harmonic functions of polynomial growth on Riemannian manifolds with non-negative Ricci curvature is finite dimensional. In a series of paper, Colding and Minicozzi proved and went beyond Yau's conjecture. P. Li and J. P. Wang proved further results on this topic afterwards.

1 Introduction 1
1.1 Historical background ............ 1
1.2 Linear growth .................... 8
1.3 Polynomial growth ................ 11
2 Notation and Some Related Properties 15
3 Harmonic Functions of Polynomial Growth 18
4 Example 29

[A-B-R] S. Axler, P. Bourdon, and W. Ramey, {Harmonic function theory}, Springer-Verlag, 1992, p.73-82.
[B-K-N] S. Bando, A. Kasue, and H. Nakajima, {On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth}, Invent. Math. {97} (1989), 313-349.
[Bk] R. Bartnik,{The mass of an asymptotically flat manifold}, Comm. Pure Appl. Math. {39} (1986), 661-693.
[B-C] R. Bishop and R. Crittenden, {Geometry of Manifolds}, Academic Press, New York and London, 1964.
[Br] P. Buser, {On Cheeger's inequality $\lambda_1 \ge h^2/4$}, Geometry of the Laplace operator, Proc. Symp. Pure Math., vol. 36, AMS, 1980, pp. 29-77.
[C-C-M] J. Cheeger, T. Colding, and W. Minicozzi, {Linear growth harmonic functions on complete manifolds with non-negative Ricci curvature}, Geom. Func. Anal. {5} (1995), 948-954.
[Cg1] S. Y. Cheng, {Liouville theorem for harmonic maps}, Geometry of the Laplace operator, Proc. Symp. Pure Math., vol. 35, AMS, 1980, pp. 147-151.
[CGT] J. Cheeger, M. Gromov and M. Taylor, {Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds}, J. Diff. Geom. {17} (1983), 15-53.
[C-M1] T. Colding and W. Minicozzi, {On function thoery on spaces with a lower Ricci curvature bound}, Math. Research Letters {3} (1996), 241-246.
[C-M2] T. Colding and W. Minicozzi, {Harmonic functions with polynomial growth}, J. Diff. Geom. {46} (1997) 1-77.
[C-M3] T. Colding and W. Minicozzi, {Large scale behavior of kernels of Schr$\ddot{o}$dinger operators}, Amer. J. Math. {119} (1997), no. 6, 1355-1398.
[C-M4] T. Colding and W. Minicozzi, {Generalized Liouville properties for manifolds}, Math. Res. Lett. {3} (1996), no. 6, 723-729.
[C-M5] T. Colding and W. Minicozzi, {Harmonic functions on manifolds}, Ann. of Math. (2) {146} (1997), no. 3, 725-747.
[C-M6] T. Colding and W. Minicozzi, {Weyl type bounds for harmonic functions}, Invent. Math. {131} (1998), no. 2, 257-298.
[C-V] S. Cohn-Vossen, {k$\ddot{u}$rzeste Wege and Totalkr$\ddot{u}$mmung auf Fl$\ddot{a}$chen}, Compositio Math. {2} (1935), 69-133.
[C-Y] S. Y. Cheng and S. T. Yau, {Differential equations on Riemannian manifolds and their geometric applications}, Comm. Pure Appl. Math. {28} (1975), 333-354.
[D] H. D, {Bounded harmonic functions and positive Ricci curvature}, Math. Zei. {191} (1986), 559-565.
[G1] A. Grigor'yan, {The heat equation on noncompact Riemannian manifolds}, Math. USSR Sbornik. {72} (1992), 47-77.
[G2] A. Grigor'yan, {On the existence of positive fundamental solution of the Laplace equation on Riemannian manifolds}, Mat. Sbornik, {128} (1995), 354-363.
[H] A. Huber, {On subharmonic functions and differential geometry in the large}, Comm. Math. Helv. {32} (1957), 13-72.
[K1] A. Kasue, {Recent Topics in Differential and Analytic Geometry}, Adv. Stud. Pure Math., vol. 18, North-Holland, 1989.
[K2] A. Kasue, {Harmonic functions of polynomial growth on complete manifolds}, Proc. Sympos. Pure Math., Amer. Math. Soc. Vol. 54, Part 1, (Ed. R. Greene and S. T. Yau) (1993), 281-290
[K3] A. Kasue, {Harmonic functions of polynomial growth on complete manifolds II}, J. Math. Soc. Japan {47} (1995) 37-65.
[Ka] A. Kasue, {Harmonic functions with growth conditions on a manifold of asymptotically non-negative curvature II}, Recent Topics in Differential and Analytic Geometry, Adv. Stud. Pure Math. vol.18, North-Holland, 1989.
[Kn] J. L. Kazdan, {Parabolicity and the Liouville property on complete Riemannian manifolds}, Seminar on New Results in Nonlinear Partial Differential Equations, Max-Planck-Inst., Bonn, 1987, pp.153-166.
[L1] P. Li, {Function thoery on complete Riemannian manifolds.}, Asterisque {132} (1985), 277-284.
[L2] P. Li, {The theory of harmonic functions and its relation to geometry}, Proc. Sympos. Pure Math., Amer. Math. Soc. Vol. 54, Part 1, (Ed. R. Greene and S. T. Yau) (1993), 307-315.
[L3] P. Li, {Harmonic functions of linear growth on K$\ddot{a}$hler manifolds with non-negative Ricci curvature}, Math. Research Letters {2} (1995), 79-94.
[L4] P. Li, {Lecture Notes on Geometric Analysis} 1996.
[L5] P. Li, {Harmonic sections of polynomial growth}, Math. Research Letters {4} (1997), 35-44.
[L6] P. Li, {Curvature and function thoery on Riemannian manifolds}, Surveys in Diff. Geom. {7} (2000), 71-111.
[L-T1] P. Li and L. F. Tam, {Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set.}, Ann. Math. {125} (1987), 171-207.
[L-T2] P. Li and L. F. Tam, {Linear growth harmonic functions on a complete manifold}, J. Diff. Geom. {29} (1989) 421-425.
[L-T3] P. Li and L. F. Tam, {Complete surfaces with finite total curvature}, J. Diff. Geom. {33} (1991), 139-168.
[L-T4] P. Li and L. F. Tam, {Harmonic functions and the structure of complete manifolds}, J. Diff. Geom. {35} (1992) 359-383.
[L-T5] P. Li and L. F. Tam, {Green's functions, harmonic functions, and volume comparison}, J. Diff. Geom. {41} (1995) 277-318.
[L-W1] P. Li and J. P. Wang, {Mean value inequality}, Indiana Math. J. { 48} (1999), 1257-1283.
[L-W2] P. Li and J. P. Wang, {Counting massive sets and dimensions of harmonic functions}, J. Diff. Geom. {53} (1999), 1-43.
[S] C. J. Sung,{Harmonic functions under quasi-isometry}, J. Geom. Anal. {8} (1998), 143-161.
[S-C1] L. Saloff-Coste, {Uniformly elliptic operators on Riemannian manifolds}, J. Diff. Geom. {36} (1992), 417-450.
[S-C2] L. Saloff-Coste, {A note on Poincar$\acute{e}$, Sobolev, and Harnack inequalities}, Inter. Math. Research Notices {2} (1992), 27-38.
[S-T-W] C. J. Sung, L. F. Tam, and J. P. Wang, {Spacas of harmonic functions}, J. London Math. Soc. {61} (2000), 789-806.
[T] L. F. Tam, {A note on harmonic forms on complete manifolds}, Proc. Amer. Math. Soc. {126} (1998), 3097-3108.
[W] J. Wang, {Linear growth harmonic functions on complete manifolds}, Comm. Anal. Geom. {4} (1995), 683-698.
[Y1] S. T. Yau, {Harmonic functions on complete Riemannian manifolds}, Comm. Pure Appl. Math. {28} (1975), 201-228.
[Y2] S. T. Yau, {Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry}, Indiana Math. J. {25} (1976), 659-670.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 2. 丁文郁,2000。「從確保農漁會權益觀點論金融機構合併法草案」,農訓雜誌。第十七卷第一期,p74-p81。
2. 3. 王志文、吳德森、黃玲珠,1999。「農漁會信用部何去何從」,農訓雜誌。2月,p6-p11。
3. 4. 李桐豪,1998。「檢視問題金融機構發生原因與處理政策」,基層金融。第37期,p1-p13。
4. 7. 李桐豪,1999。「國家金融管理再造與農(漁)會信用部的關係」,金融財務。第三期,p1-p11。
5. 8. 李桐豪、張奇勳、梁連文,1999。「改造農會金融體系之探討-兼論分級管理政策」,今日合庫。第25卷第二期,p37-p70。
6. 15. 林碉力,車鵬程,1995。「我國基層金融機構合併相關問題之探討」,基層金融。第三十期,p85-p102。
7. 16. 林文啟 ,1997。「日本的清理逾期放款面面觀」,今日合庫。第23卷第1期,p59-p62。
8. 18. 林維義,1999。「農會信用部經營危機之改革方向探討」,金融財務。第三期,p13-p23。
9. 21. 孫炳焱,1995。「日本農協金融的現況及其制度改革的探討」,基層金融。第三十期,p43-p67。
10. 23. 郭瑜芳,王嘉麗,2000。「我國與美國對問題金融機構之認定標準概述」。今日合庫89.12。
11. 24. 郭照榮,2000。「金融機構合併之考慮因素及其對象之選擇」,金融財務。第五期,p1-p11。
12. 32. 梁連文,1995。「日本農協合併之探討」,基層金融。第三十期,p103-p123。
13. 33. 張春雄,1996。「基層金融機構改制問題之探討」,存款保險資訊季刊。第9卷第三期,p27-p38。
14. 36. 黃建銘,1998。「農業系統金融體制的改革與整合」,存款保險資訊季刊。第十二卷第一期,p137-p151。
15. 38. 黃介良、梁連文,1999。「問題金融機構危機處理之探討」,存款保險資訊季刊。第12卷第3期,p84-p105。