|
[A-B-R] S. Axler, P. Bourdon, and W. Ramey, {Harmonic function theory}, Springer-Verlag, 1992, p.73-82. [B-K-N] S. Bando, A. Kasue, and H. Nakajima, {On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth}, Invent. Math. {97} (1989), 313-349. [Bk] R. Bartnik,{The mass of an asymptotically flat manifold}, Comm. Pure Appl. Math. {39} (1986), 661-693. [B-C] R. Bishop and R. Crittenden, {Geometry of Manifolds}, Academic Press, New York and London, 1964. [Br] P. Buser, {On Cheeger's inequality $\lambda_1 \ge h^2/4$}, Geometry of the Laplace operator, Proc. Symp. Pure Math., vol. 36, AMS, 1980, pp. 29-77. [C-C-M] J. Cheeger, T. Colding, and W. Minicozzi, {Linear growth harmonic functions on complete manifolds with non-negative Ricci curvature}, Geom. Func. Anal. {5} (1995), 948-954. [Cg1] S. Y. Cheng, {Liouville theorem for harmonic maps}, Geometry of the Laplace operator, Proc. Symp. Pure Math., vol. 35, AMS, 1980, pp. 147-151. [CGT] J. Cheeger, M. Gromov and M. Taylor, {Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds}, J. Diff. Geom. {17} (1983), 15-53. [C-M1] T. Colding and W. Minicozzi, {On function thoery on spaces with a lower Ricci curvature bound}, Math. Research Letters {3} (1996), 241-246. [C-M2] T. Colding and W. Minicozzi, {Harmonic functions with polynomial growth}, J. Diff. Geom. {46} (1997) 1-77. [C-M3] T. Colding and W. Minicozzi, {Large scale behavior of kernels of Schr$\ddot{o}$dinger operators}, Amer. J. Math. {119} (1997), no. 6, 1355-1398. [C-M4] T. Colding and W. Minicozzi, {Generalized Liouville properties for manifolds}, Math. Res. Lett. {3} (1996), no. 6, 723-729. [C-M5] T. Colding and W. Minicozzi, {Harmonic functions on manifolds}, Ann. of Math. (2) {146} (1997), no. 3, 725-747. [C-M6] T. Colding and W. Minicozzi, {Weyl type bounds for harmonic functions}, Invent. Math. {131} (1998), no. 2, 257-298. [C-V] S. Cohn-Vossen, {k$\ddot{u}$rzeste Wege and Totalkr$\ddot{u}$mmung auf Fl$\ddot{a}$chen}, Compositio Math. {2} (1935), 69-133. [C-Y] S. Y. Cheng and S. T. Yau, {Differential equations on Riemannian manifolds and their geometric applications}, Comm. Pure Appl. Math. {28} (1975), 333-354. [D] H. D, {Bounded harmonic functions and positive Ricci curvature}, Math. Zei. {191} (1986), 559-565. [G1] A. Grigor'yan, {The heat equation on noncompact Riemannian manifolds}, Math. USSR Sbornik. {72} (1992), 47-77. [G2] A. Grigor'yan, {On the existence of positive fundamental solution of the Laplace equation on Riemannian manifolds}, Mat. Sbornik, {128} (1995), 354-363. [H] A. Huber, {On subharmonic functions and differential geometry in the large}, Comm. Math. Helv. {32} (1957), 13-72. [K1] A. Kasue, {Recent Topics in Differential and Analytic Geometry}, Adv. Stud. Pure Math., vol. 18, North-Holland, 1989. [K2] A. Kasue, {Harmonic functions of polynomial growth on complete manifolds}, Proc. Sympos. Pure Math., Amer. Math. Soc. Vol. 54, Part 1, (Ed. R. Greene and S. T. Yau) (1993), 281-290 [K3] A. Kasue, {Harmonic functions of polynomial growth on complete manifolds II}, J. Math. Soc. Japan {47} (1995) 37-65. [Ka] A. Kasue, {Harmonic functions with growth conditions on a manifold of asymptotically non-negative curvature II}, Recent Topics in Differential and Analytic Geometry, Adv. Stud. Pure Math. vol.18, North-Holland, 1989. [Kn] J. L. Kazdan, {Parabolicity and the Liouville property on complete Riemannian manifolds}, Seminar on New Results in Nonlinear Partial Differential Equations, Max-Planck-Inst., Bonn, 1987, pp.153-166. [L1] P. Li, {Function thoery on complete Riemannian manifolds.}, Asterisque {132} (1985), 277-284. [L2] P. Li, {The theory of harmonic functions and its relation to geometry}, Proc. Sympos. Pure Math., Amer. Math. Soc. Vol. 54, Part 1, (Ed. R. Greene and S. T. Yau) (1993), 307-315. [L3] P. Li, {Harmonic functions of linear growth on K$\ddot{a}$hler manifolds with non-negative Ricci curvature}, Math. Research Letters {2} (1995), 79-94. [L4] P. Li, {Lecture Notes on Geometric Analysis} 1996. [L5] P. Li, {Harmonic sections of polynomial growth}, Math. Research Letters {4} (1997), 35-44. [L6] P. Li, {Curvature and function thoery on Riemannian manifolds}, Surveys in Diff. Geom. {7} (2000), 71-111. [L-T1] P. Li and L. F. Tam, {Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set.}, Ann. Math. {125} (1987), 171-207. [L-T2] P. Li and L. F. Tam, {Linear growth harmonic functions on a complete manifold}, J. Diff. Geom. {29} (1989) 421-425. [L-T3] P. Li and L. F. Tam, {Complete surfaces with finite total curvature}, J. Diff. Geom. {33} (1991), 139-168. [L-T4] P. Li and L. F. Tam, {Harmonic functions and the structure of complete manifolds}, J. Diff. Geom. {35} (1992) 359-383. [L-T5] P. Li and L. F. Tam, {Green's functions, harmonic functions, and volume comparison}, J. Diff. Geom. {41} (1995) 277-318. [L-W1] P. Li and J. P. Wang, {Mean value inequality}, Indiana Math. J. { 48} (1999), 1257-1283. [L-W2] P. Li and J. P. Wang, {Counting massive sets and dimensions of harmonic functions}, J. Diff. Geom. {53} (1999), 1-43. [S] C. J. Sung,{Harmonic functions under quasi-isometry}, J. Geom. Anal. {8} (1998), 143-161. [S-C1] L. Saloff-Coste, {Uniformly elliptic operators on Riemannian manifolds}, J. Diff. Geom. {36} (1992), 417-450. [S-C2] L. Saloff-Coste, {A note on Poincar$\acute{e}$, Sobolev, and Harnack inequalities}, Inter. Math. Research Notices {2} (1992), 27-38. [S-T-W] C. J. Sung, L. F. Tam, and J. P. Wang, {Spacas of harmonic functions}, J. London Math. Soc. {61} (2000), 789-806. [T] L. F. Tam, {A note on harmonic forms on complete manifolds}, Proc. Amer. Math. Soc. {126} (1998), 3097-3108. [W] J. Wang, {Linear growth harmonic functions on complete manifolds}, Comm. Anal. Geom. {4} (1995), 683-698. [Y1] S. T. Yau, {Harmonic functions on complete Riemannian manifolds}, Comm. Pure Appl. Math. {28} (1975), 201-228. [Y2] S. T. Yau, {Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry}, Indiana Math. J. {25} (1976), 659-670.
|