|
1 G. Zanaboni, A. Rossi, A. M. T. Onana, R. Tenni. Stability and networks of hydrogen bonds of the collagen triple helical structure: influence of pH and chaotropic nature three anions. Matrix Blology 2000; 19: 511-520. 2 K. Yamauchi, N. Takeuchi, A. Kurimoto, T. Tanabe. Films of collagen crossliked by S-S bonds: preparation and characterzation. Biomaterials 2001; 22: 855-863. 3 許元昱, 李旺祚, 生物化學新論. 合記圖書出版社 1986:936-941. 4 楊炯琳, 陳瑞祥. 膠原蛋白生物材料及應用. 化工資訊 1999; 2: 33-38. 5 L. H. H. Olde Damink, P. J. Dijkstra, M. J. A. van Luyn, P. B. van Wachem, P. Nieuwenhuis and J. Feijen. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 1996; 17: 765-773. 6 L. H H. Olde Damink, P. J. Dijkstra, M. J. A. van Luyn, P. B. van Wachem, P. Nieuwenhuis and J. Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. Journal of Materials Science 1995; 6: 460-472. 7 M.T. Sheu, J.C. Huang, G.C. Yeh, H.O. Ho. Characterization of collagen gel solution and collagen matrices for cell culture. Biomaterials 2001; 22: 1713-1719. 8 K. S. Weadock, E. J. Miller, L. D. Bellincampi, J. P. Zawadsky, M. G. Dunn. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res 1995; 29: 1373-1379. 9 W. Tan, R.Krishnaraj, T. A. Desai. Influence of chitosan on cell viability and proliferation in three dimensional collagen gels. Annual EMBS International Conference 2000; 2: 1509-1524. 10 H. Schoof, J. Apel, I. Heschel, G. Rau. Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res 2001; 58: 352-357. 11 J. C. Tiller, G. Bonner, L.C. Pan, A. M. Klibanov. Improving biomaterial properties of collagen films by chemical modification. Biotechnol Bioeng 2001; 73: 246-252. 12 李建雄, 黃淑姿. 生物化學. 藝軒圖書出版 1992; 2: 885-897. 13 J. S. Pieper, P. B. van Wachem, M. J. A. van Luny, L. A. Brouwer, T. Hafmans, J. H. Veerkamp, T. H. van Kuppevelt. Attachement of glycosaminoglycans to collagenous matrices modulates the tissue reponse in rats. Biomaterials 2000; 21: 1689-1699. 14 M. Rehakova, D. Bakos, K. Vizarova, M. Soldan, M. Jurickova. Properties of collagen and hyaluronic acid composite materials and their modification by chemical crosslinking. J Biomed Mater Res 1996; 30: 369-372. 15 K. Raghunath, G. Biswas, K. Panduranga Rao, K. T. Joseph, M. Chvapil. Some characteristics of collagen-heparin complex. J Biomed Mater Res 1983; 17: 613-621. 16 M. J. B. Wissink, R. Beernink, J.S. Pieper, A. A. Poot, G. H. M. Engbers, T. Beugeling, W. G. van Aken, J. Feijen. Immobilization of heparin to EDC/NHS-crosslinked collagen characterization and in vitro evaluation. Biomaterials 2001; 22: 151-163. 17 J. S. Pieper, A. Oosterhof, P. J. Dijkstra, J.H. Veerkamp, T. H. van Kuppevelt. Preparation and characterization of porous crosslinked collagenous matrices containing bioavailiable chondroitin sulphate. Biomaterials 1999; 20: 847-858. 18 J. S. Pieper, T. Hafmans, J.H. Veerkamp, T. H. van Kuppevelt. Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking and ultrastructural aspects. Biomaterials 2000; 21: 581-593. 19 C. R. Lee, A. J. Grodzinsky, M. Spector. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials 2001; 22: 3145-3154. 20 P. B. van Wachem, J. A. Plantinga, M. J. B. Wissink, R. Beernink, A. A. Poot, G. H. M. Engbers, T. Beugeling, W. G. van Aken, J. Feijen, M. J. A. van Luyn. In vivo biocompatibility of carbodiimide-crosslinked collagen matrices: Effects of crosslink density, heparin immobilization, and bFGF loading. J Biomed Mater Res 2001; 55: 368-378. 21 M. H. Spilker, K. Asano, I. V. Yannas, M. Spector. Contraction of collagen-glycosaminoglycan matrices by peripheral nerve cells in vitro. Biomaterials 2001; 22: 1085-1093. 22 J. L. C. van Susante, J. Pieper, P. Buma, T. H. van Kuppevelt, H. van Beuningen, P. M. van der Kraan, J. H. Veerkamp, W. B. van den Berg, R. P. H. Veth. Linkage of chondroitin-sulfate to typeⅠ collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro. Biomaterials 2001; 22: 2359-2369. 23 T. M. Freyman, I. V. Yannas, R. Yokoo, L. J. Gibson. Fibroblast contraction of a collagen-GAG matrix. Biomaterials 2001; 22: 2883-2891 24 S. V. Madihally, H. W. T. Matthe. Porous chitosan scaffolds for tissue engineering. Biomaterials 1999;20:1133-1142. 25 Y. M. Elcin, V. Dixit, G. Gitnick. Hepatocyte attchment on biodegradable modified chitosan membranes: in vitro evaluation for the development of liver organoids. Artificial Organs 1998; 10: 837-846. 26 J. Ma, H. Wang, B. He, J. Chen. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilary material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 2001; 22: 331-336. 27 F. L. Mi, Y. C. Tan, H. F. Liang, H. W. Sung. In vivo biocompatibility and degradability of a novel injectable chitosan based implant. Biomaterials 2002; 23: 181-191. 28 G. I. Howling, P. W. Dettmar, P. A. Goddard, F. C. Hampson, M. Dornish, E. J. wood. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials 2001; 22: 2959-2966. 29 C. C. Tsai, Y. Chang, H. W. Sung, J. C. Hsu, C. N. Chen. Effects of heparin immobilization on the surface characteristics of a biological tissue fixed with a naturally occurring crosslinking agent(genipin): an in vitro study. Biomaterials 2001; 22: 523-533. 30 L. L. H. Huang, H. W. Sung, C. C. Tsai, D. M. Huang. Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent. J Biomed Mater Res 1998; 42: 568-576. 31 C. C. Tsai, H. W. Sung, L. L. H. Huang, R. N. Huang, C. T. Chiu. Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res 1998; 42: 560-567. 32 藍德輝. 人體組織學. 合記圖書出版社 1975: 349-363. 33 D. Frias-Hidvegi, M. D., F. I. A. C., Liver and pancreas. Igaku-shoin New York : 27-40. 34 G. Alpini, J. O. Phillips, B. Vroman, N. F. Larusso. Recent advances in the isolation of liver cells. Hepatology 1944; 20: 494-513. 35 高偉良. 動物細胞培養. 金名圖書有限公司 1994. 36 C. S. Ranucci, A. Kumar, S. P. Batra, P. V. Moghe. Control of hepatocyte function on collagen foams: sizing matrix pores toward selective induction of 2-D and 3-D cellular morphogenesis. Biomaterials 2000; 21: 783-793. 37 M. A. Gilles, A. Q. Hudson, C. L. Borders. Stability of water-soluble carbodiimides in aqueous solution. Analytical Biochemistry 1990; 184: 244-248. 38 C.l. Wang, T. Miyata, B. Weksler, A. L. Rubin, K. H. Stenzel. Collagen-induced platelet aggregation and release. Ⅰ effects of side-chain modifications and role of arginyl residues. Biochimica et Biophysica Acta 1978; 554: 555-567. 39 I.V. Yannas, J. F. Burke, P.L. Gordon, C. Huang, R.H. Rubenstein. Design of an artificial skin.Ⅱ.control of chemical composition. J Biomed Mater Res 1980; 14: 107-131. 40 L. A. Elson, W. T. J. Morgan. A colorimetric method for the determination of glucosamine and chondrosamine. Biochem. 1933; 27: 1824-1828. 41 D. A. Swann, E. A. Balazs. Determination of the hexosamine content of macromolecules with manual and automated techniques using the p-dimethylaminobenzaldehyde reaction. Biochimica et Biophysica Acta 1966; 130: 112-129. 42 S. Prochazkova, K. M. Varum, K. Ostgaard. Quantitative determination of chitosan by ninhydrin. Carbohydrate Polymers 1999; 38: 115-122. 43 J. M. Brewer, C. W. Roberts, W. H. Stimson, J. Alexander. Accurate determination of adjuvant-associated protein or peptide by ninhydrin assay. Vaccine 1995; 13: 1441-1444. 44 T. H. Yang, H. Miyoshi, N. Ohshima. Novel cell immobilization method utilizing centrifugal force to achieve high-density hepatocyte culture in porous scaffold. J Biomed Mater Res 2001; 55: 379-386. 45 K. Yanagi, H. Miyoshi, H. Fukuda, N. Ohshima. A packed-bed reactor utilizing porous resin enables high density culture of hepatocytes. Appl Microbiol Biotechnol 1992; 37: 316-320. 46 H. Miyoshi, K. Yanagi, H. Fukuda, N. Ohshima. Long-term continuous culture of hepatocytes in a packed-bed reactor utilizing porous resin. Biotechnol Bioeng 1994; 43: 635-644 47 S.H. Yu, R. Buchholz, S.K. Kim. Encapsulation of rat hepatocyte spheroids for the development of artificial liver. Biotechnology Techniques 1999; 13: 609-614. 48 K. Yanagi, H. Miyoshi, N. Ohshima. Improvement of metabolic performance of hepatocytes culture in vitro in a packed-bed reactor for use as a bioartificial liver. ASAIO 1998; 44: m436-m440. 49 N. Ohshima, K. Yanagi, H. Miyoshi. Packed-bed type reactor to attain high density culture of hepatocytes for use as a bioartificial liver. Artificial Organs 1997; 21: 1169-1176. 50 F. J. Wu, J. R. Friend, C. C. Hsiao, J. Zilliox, W. Jeko, F. B. Cerra, and W. S. Hu. Efficient assembly of rat hepatocyte spheroids for tissue engineering applications. Biotechnol Bioeng 1996; 50: 404-415. 51 G. Zund, Q. Ye, S. P. Hoerstrup, A. Schoberlein, A. C. Schmid, J. grunenfelfer, P. Vogt, M. Turina. Tissue engineering in cardiovascular surgery: MTT, a rapid and reliable quantitative method to assess the optimal human cell seeding on polymeric meshes. European Journal of Cardio-thoracic Surgery 1999; 15: 519-524. 52 G. Ciapetti, E. Cenni, L. Pratelli, A. Pizzoferrato. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials 1993; 14: 359-364.
|