跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 15:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊靜仁
論文名稱:利用生醫材料培養肝細胞以開發生物型人工肝臟
論文名稱(外文):Utilize biomaterials to culture hepatocytes for development of bioartificial liver
指導教授:陳志平陳志平引用關係
學位類別:碩士
校院名稱:長庚大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:106
中文關鍵詞:膠原蛋白幾丁聚醣肝細胞硫酸軟骨素人工肝臟載體
外文關鍵詞:collagenchitosanhepatocytesCSbioartificial livermatrix
相關次數:
  • 被引用被引用:3
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肝臟的病變對人類來說是個嚴重的問題,每年都有許多人死於肝臟的疾病,所以要如何解決這問題就相對的重要,我們嘗試建立一個人工肝臟系統以取代已失去功能的肝臟。
在我們的研究上,是以膠原蛋白與幾丁聚醣作為一個適合細胞生長的載體環境,並試著以加入硫酸軟骨素於膠原蛋白中來做為載體的改質。我們利用冷凍溫度的不同作出具孔洞的膠原蛋白載體,因細胞本身大小約10~20μm,所以我們利用冷凍溫度在-30℃下,做出具有60μm左右孔洞大小的載體供細胞生長。因膠原蛋白所做出的載體本身機械強度不好,所以我們分別嘗試以物理(DHT)及化學(EDC)方式作交聯。在DHT上我們發現會使載體的孔洞崩塌,所以我們不採用;而以EDC做交聯後,我們以游離基的減少量來表示交聯的程度。
以共價鍵的方式將硫酸軟骨素(CS)固定在我們的載體上,由結果可知道大約在每克的載體上可固定上100毫克的CS。我們利用這種具CS的膠原蛋白載體與未含CS的膠原蛋白載體分別來培養人類肝細胞株(C3A/HepG2),以觀察細胞的生長情形與細胞代謝的能力。在細胞增殖方面,我們發現當基質中若有添加CS時,細胞生長的速度會比未含CS時來的快。但不論有或沒有添加CS細胞都會維持一定的生長情形,並不會有大量死亡的現象發生;而在代謝功能方面,我們以培養基中的ammonia、urea-N與albumin含量做為指標。在與培養皿上培養作比較發現,在培養皿上培養後細胞的代謝功能會隨時間增加而減退,但在載體上無論有或沒有含CS,細胞的代謝功能都不會減退,這現象尤其在含有CS的載體上特別顯著。
我們同樣利用冷凍乾燥法於-20℃下,冷凍製備出具有孔洞大小約100 μm的幾丁聚醣載體,再以不同交聯條件交聯載體,在交聯劑濃度為0.625﹪、反應溫度25℃下,反應9小時有最佳的交聯條件,其水含量與孔隙度都符合我們的要求此載體用以培養老鼠肝細胞。在MTT分析時我們發現,經glutaraldehyde(GA)交聯後的幾丁聚醣載體,對細胞有極大的毒化現象;而經genipin(GP)交聯的載體毒化情形並不嚴重,且經GA交聯後的載體在培養30天後,重量損失較經GP交聯的載體嚴重。
肝細胞固定於載體的量隨著細胞總量增加而減少,在細胞總量小於1×105時,細胞固定率約在90﹪以上;大於1×105時,細胞固定率約只剩80﹪左右,而肝細胞代謝的能力也隨著細胞濃度的增加而下降。肝細胞於幾丁聚醣載體上培養1天後,肝細胞就有彼此聚集的現象發生,在3天後,肝細胞幾乎都伸展貼附在載體上,這顯示肝細細胞與載體有良好的相容性。在肝細胞代謝方面,無論在ammonia的代謝、urea-N的分泌或albumin的合成,在我們培養的期間中,其功能都高於培養在培養皿中,而在培養7天後肝細胞都還能維持其功能。
在我們發展人工肝臟上,須要特別著重於細胞的生長情形與代謝能力。所以由本實驗可知,膠原蛋白與幾丁聚醣本身對細胞的生長具有絕對的幫助性,且對細胞的代謝功能也都能持續的保持,所以膠原蛋白載體與幾丁聚醣載體為一個適合用來開發人工肝臟的生醫材料。

In this research, we utilize collagen and chitosan as scaffolds for cultivation of liver cells. The pore size of matrices were influenced by the freezing temperature during the preparation step. Collagen matrices prepared at -30℃ give average pore sizes of 60 μm, while chitosan matrices prepared at -20℃ give pore sizes of 100 μm. The collagen matrices were crosslinked by dehydrothermal(DHT) treatment or with a chemical reagent(EDC). The pores of the matrix were partial collapsed after DHT but remained intact after EDC-crosslinking. Chitosan matrices were crosslinked by genipin(GP) and glutaraldehyde(GA), the most suitable crosslinking conditions were at 25℃, reaction for 9 hr, and with 0.625% reagent concentration.
Chondroitin sulphate(CS) could be covalently attached to the collagen matrices during crosslinking. Over 100 mg of CS could be attached to collagen per 1 g of collagen matrix. Collagen matrices with or without CS were used in HepG2/C3A cultivation. Cell growth in collagen matrix containing CS were better than that without CS. For liver specific functions, ammonia, urea-N and albumin synthesis rates are higher for cells grown in collagen matrices (with or without CS) than those of cells grown on dishes Collagen matrices also promote cell proliferation and maintain liver specific functions in long time culture.
For chitosan matrices crosslinked by GA, weight loss are higher than those crosslinkied by GP. MTT assay also revealed less cells toxicity for GP-crosslinked chitosan matrices.
The cell loading efficiency approaches 90﹪ when the initial cell loading numbers were below 1×105, and seeding efficiency decreased to 80﹪ for cell density above 1×105 .Rat hepatocyte specific functions decrease with seeding cell number increase, and cells aggregation was observed after cultivation for 1 day in chiotsan-GP matrices. Metabolic functions of hepatocytes for ammonia removal, urea-N and albumin synthesis were better when cells cultivated in chitosan matrices then in dishes.

中文摘要……………………………………………………………(Ⅰ)
英文摘要……………………………………………………………(Ⅲ)
主目錄………………………………………………………………(Ⅴ)
表目錄………………………………………………………………(Ⅶ)
圖目錄………………………………………………………………(Ⅷ)
第一章 緒論……………………………………………………(1)
第二章 文獻回顧………………………………………………(3)
2.1 組織工程……………………………………………(3)
2.2 人工器官……………………………………………(4)
2.3 膠原蛋白(collagen)……………………………(5)
2.3.1 膠原蛋白組織結構………………………………(5)
2.3.2 膠原蛋白在醫學上的應用……………………(8)
2.4 葡聚醣(glycosaminoglycan GAG)…………(10)
2.4.1 硫酸軟骨素(chondroitin sulfate CS)……(14)
2.5 幾丁質與幾丁聚醣………………………………(14)
2.6 天然交聯劑(genipin)…………………………(16)
2.7 肝臟(liver)……………………………………(18)
2.8 細胞培養技術………………………………………(21)
第三章 實驗藥品與方法……………………………………(23)
3.1 實驗設備………………………………………………(23)
3.2 實驗藥品………………………………………………(25)
3.3 實驗方法………………………………………………(28)
3.3.1 從雞皮中純化膠原蛋白………………………………(28)
3.3.2 膠體電泳分析…………………………………………(29)
3.3.3 膠原蛋白載體之製備…………………………………(30)
3.3.4 幾丁聚醣載體之製備…………………………………(30)
3.3.5 載體孔隙度測定………………………………………(30)
3.3.6 載體水含量測定………………………………………(31)
3.3.7 膠原蛋白載體之物理性交聯(Dehydrothermal)…(31)
3.3.8 膠原蛋白載體之化學交聯(EDC)……………(31)
3.3.9 幾丁聚醣載體交聯………………………………(32)
3.3.10 自由基(Free-amine group)含量測量……(32)
3.3.11 硫酸軟骨素(CS)定量測量………(32)
3.3.12 幾丁聚醣載體交聯程度測定………(33)
3.3.13 C3A繼代培養…………………………(33)
3.3.14 細胞計數……………………………(34)
3.3.15 C3A於基質上的培養(離心)………(34)
3.3.16 C3A於基質上的培養(重力 & 注射)(35)
3.3.17 SEM樣品前處理………………………(36)
3.3.18 細胞DNA測定…………………………(36)
3.3.19 C3A細胞株代謝測定…………………(37)
3.3.19.1 培養基 中ammonia 含量測定…(37)
3.3.19.2 urea-N 含量測定………………(37)
3.3.19.3 albumin 含量 測定……………(37)
3.3.20 肝細胞代謝測定………………………(38)
3.3.20.1 培養基 中ammonia 含量測定…(38)
3.3.20.2 urea-N 含量測定………………(39)
3.3.20.3 albumin 含量 測定……………(39)
3.3.21 MTT assay………………………………(39)
3.3.22 老鼠肝細胞分離………………………(39)
第四章 結果與討論………………………………(40)
第一部份
膠原蛋白載體之製備與C3A細胞株於膠原蛋白載體上之生長形態
4.1 膠原蛋白定性分析……………………………(42)
4.2 膠原蛋白載體(雞皮純化)結構形態………(44)
4.3 膠原蛋白載體(bovine)的型態……………(43)
4.4 膠原蛋白交聯程度測定………………………(50)
4.5 硫酸軟骨素(CS)於膠原蛋白載體中的含量(52)
4.6 C3A細胞固定於膠原蛋白載體…………………(55)
4.7 C3A細胞在膠原蛋白載體的生長情形…………(59)
4.8 C3A細胞在含有CS的膠原蛋白載體中生長情形(61)
4.9 以DNA定量C3A細胞在不同環境下之生長情形(63)
4.10 C3A細胞在載體中的代謝功能…………………(65)
第二部份
幾丁聚醣載體之製備與鼠肝細胞於幾丁聚醣載體上之培養
4.11 幾丁聚醣載體的性質……………………………(72)
4.12 幾丁聚醣載體交聯性質…………………………(75)
4.12.1 不同交聯劑濃度………………………………(76)
4.12.2 不同交聯反應時間……………………………(78)
4.12.3 不同交聯反應溫度……………………………(80)
4.13 幾丁聚醣載體的性質………………………………(83)
4.14 幾丁聚醣載體對細胞毒性測試……………………(86)
4.15 細胞濃度對生長的影響性…………………………(87)
4.16 肝細胞於平面及載體上的形態……………………(91)
4.17 肝細胞在載體上的代謝功能………………………(94)
第五章 結論…………………………………………………(98)
參考文獻…………………………………………………………(100)
附錄
第三屆全亞洲生醫材料與藥物釋放研討會論文發表………(107)
第七屆生化工程研討會論文發表……………………………(110)

1 G. Zanaboni, A. Rossi, A. M. T. Onana, R. Tenni. Stability and networks of hydrogen bonds of the collagen triple helical structure: influence of pH and chaotropic nature three anions. Matrix Blology 2000; 19: 511-520.
2 K. Yamauchi, N. Takeuchi, A. Kurimoto, T. Tanabe. Films of collagen crossliked by S-S bonds: preparation and characterzation. Biomaterials 2001; 22: 855-863.
3 許元昱, 李旺祚, 生物化學新論. 合記圖書出版社 1986:936-941.
4 楊炯琳, 陳瑞祥. 膠原蛋白生物材料及應用. 化工資訊 1999; 2: 33-38.
5 L. H. H. Olde Damink, P. J. Dijkstra, M. J. A. van Luyn, P. B. van Wachem, P. Nieuwenhuis and J. Feijen. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 1996; 17: 765-773.
6 L. H H. Olde Damink, P. J. Dijkstra, M. J. A. van Luyn, P. B. van Wachem, P. Nieuwenhuis and J. Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. Journal of Materials Science 1995; 6: 460-472.
7 M.T. Sheu, J.C. Huang, G.C. Yeh, H.O. Ho. Characterization of collagen gel solution and collagen matrices for cell culture. Biomaterials 2001; 22: 1713-1719.
8 K. S. Weadock, E. J. Miller, L. D. Bellincampi, J. P. Zawadsky, M. G. Dunn. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res 1995; 29: 1373-1379.
9 W. Tan, R.Krishnaraj, T. A. Desai. Influence of chitosan on cell viability and proliferation in three dimensional collagen gels. Annual EMBS International Conference 2000; 2: 1509-1524.
10 H. Schoof, J. Apel, I. Heschel, G. Rau. Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res 2001; 58: 352-357.
11 J. C. Tiller, G. Bonner, L.C. Pan, A. M. Klibanov. Improving biomaterial properties of collagen films by chemical modification. Biotechnol Bioeng 2001; 73: 246-252.
12 李建雄, 黃淑姿. 生物化學. 藝軒圖書出版 1992; 2: 885-897.
13 J. S. Pieper, P. B. van Wachem, M. J. A. van Luny, L. A. Brouwer, T. Hafmans, J. H. Veerkamp, T. H. van Kuppevelt. Attachement of glycosaminoglycans to collagenous matrices modulates the tissue reponse in rats. Biomaterials 2000; 21: 1689-1699.
14 M. Rehakova, D. Bakos, K. Vizarova, M. Soldan, M. Jurickova. Properties of collagen and hyaluronic acid composite materials and their modification by chemical crosslinking. J Biomed Mater Res 1996; 30: 369-372.
15 K. Raghunath, G. Biswas, K. Panduranga Rao, K. T. Joseph, M. Chvapil. Some characteristics of collagen-heparin complex. J Biomed Mater Res 1983; 17: 613-621.
16 M. J. B. Wissink, R. Beernink, J.S. Pieper, A. A. Poot, G. H. M. Engbers, T. Beugeling, W. G. van Aken, J. Feijen. Immobilization of heparin to EDC/NHS-crosslinked collagen characterization and in vitro evaluation. Biomaterials 2001; 22: 151-163.
17 J. S. Pieper, A. Oosterhof, P. J. Dijkstra, J.H. Veerkamp, T. H. van Kuppevelt. Preparation and characterization of porous crosslinked collagenous matrices containing bioavailiable chondroitin sulphate. Biomaterials 1999; 20: 847-858.
18 J. S. Pieper, T. Hafmans, J.H. Veerkamp, T. H. van Kuppevelt. Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking and ultrastructural aspects. Biomaterials 2000; 21: 581-593.
19 C. R. Lee, A. J. Grodzinsky, M. Spector. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials 2001; 22: 3145-3154.
20 P. B. van Wachem, J. A. Plantinga, M. J. B. Wissink, R. Beernink, A. A. Poot, G. H. M. Engbers, T. Beugeling, W. G. van Aken, J. Feijen, M. J. A. van Luyn. In vivo biocompatibility of carbodiimide-crosslinked collagen matrices: Effects of crosslink density, heparin immobilization, and bFGF loading. J Biomed Mater Res 2001; 55: 368-378.
21 M. H. Spilker, K. Asano, I. V. Yannas, M. Spector. Contraction of collagen-glycosaminoglycan matrices by peripheral nerve cells in vitro. Biomaterials 2001; 22: 1085-1093.
22 J. L. C. van Susante, J. Pieper, P. Buma, T. H. van Kuppevelt, H. van Beuningen, P. M. van der Kraan, J. H. Veerkamp, W. B. van den Berg, R. P. H. Veth. Linkage of chondroitin-sulfate to typeⅠ collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro. Biomaterials 2001; 22: 2359-2369.
23 T. M. Freyman, I. V. Yannas, R. Yokoo, L. J. Gibson. Fibroblast contraction of a collagen-GAG matrix. Biomaterials 2001; 22: 2883-2891
24 S. V. Madihally, H. W. T. Matthe. Porous chitosan scaffolds for tissue engineering. Biomaterials 1999;20:1133-1142.
25 Y. M. Elcin, V. Dixit, G. Gitnick. Hepatocyte attchment on biodegradable modified chitosan membranes: in vitro evaluation for the development of liver organoids. Artificial Organs 1998; 10: 837-846.
26 J. Ma, H. Wang, B. He, J. Chen. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilary material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 2001; 22: 331-336.
27 F. L. Mi, Y. C. Tan, H. F. Liang, H. W. Sung. In vivo biocompatibility and degradability of a novel injectable chitosan based implant. Biomaterials 2002; 23: 181-191.
28 G. I. Howling, P. W. Dettmar, P. A. Goddard, F. C. Hampson, M. Dornish, E. J. wood. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials 2001; 22: 2959-2966.
29 C. C. Tsai, Y. Chang, H. W. Sung, J. C. Hsu, C. N. Chen. Effects of heparin immobilization on the surface characteristics of a biological tissue fixed with a naturally occurring crosslinking agent(genipin): an in vitro study. Biomaterials 2001; 22: 523-533.
30 L. L. H. Huang, H. W. Sung, C. C. Tsai, D. M. Huang. Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent. J Biomed Mater Res 1998; 42: 568-576.
31 C. C. Tsai, H. W. Sung, L. L. H. Huang, R. N. Huang, C. T. Chiu. Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res 1998; 42: 560-567.
32 藍德輝. 人體組織學. 合記圖書出版社 1975: 349-363.
33 D. Frias-Hidvegi, M. D., F. I. A. C., Liver and pancreas. Igaku-shoin New York : 27-40.
34 G. Alpini, J. O. Phillips, B. Vroman, N. F. Larusso. Recent advances in the isolation of liver cells. Hepatology 1944; 20: 494-513.
35 高偉良. 動物細胞培養. 金名圖書有限公司 1994.
36 C. S. Ranucci, A. Kumar, S. P. Batra, P. V. Moghe. Control of hepatocyte function on collagen foams: sizing matrix pores toward selective induction of 2-D and 3-D cellular morphogenesis. Biomaterials 2000; 21: 783-793.
37 M. A. Gilles, A. Q. Hudson, C. L. Borders. Stability of water-soluble carbodiimides in aqueous solution. Analytical Biochemistry 1990; 184: 244-248.
38 C.l. Wang, T. Miyata, B. Weksler, A. L. Rubin, K. H. Stenzel. Collagen-induced platelet aggregation and release. Ⅰ effects of side-chain modifications and role of arginyl residues. Biochimica et Biophysica Acta 1978; 554: 555-567.
39 I.V. Yannas, J. F. Burke, P.L. Gordon, C. Huang, R.H. Rubenstein. Design of an artificial skin.Ⅱ.control of chemical composition. J Biomed Mater Res 1980; 14: 107-131.
40 L. A. Elson, W. T. J. Morgan. A colorimetric method for the determination of glucosamine and chondrosamine. Biochem. 1933; 27: 1824-1828.
41 D. A. Swann, E. A. Balazs. Determination of the hexosamine content of macromolecules with manual and automated techniques using the p-dimethylaminobenzaldehyde reaction. Biochimica et Biophysica Acta 1966; 130: 112-129.
42 S. Prochazkova, K. M. Varum, K. Ostgaard. Quantitative determination of chitosan by ninhydrin. Carbohydrate Polymers 1999; 38: 115-122.
43 J. M. Brewer, C. W. Roberts, W. H. Stimson, J. Alexander. Accurate determination of adjuvant-associated protein or peptide by ninhydrin assay. Vaccine 1995; 13: 1441-1444.
44 T. H. Yang, H. Miyoshi, N. Ohshima. Novel cell immobilization method utilizing centrifugal force to achieve high-density hepatocyte culture in porous scaffold. J Biomed Mater Res 2001; 55: 379-386.
45 K. Yanagi, H. Miyoshi, H. Fukuda, N. Ohshima. A packed-bed reactor utilizing porous resin enables high density culture of hepatocytes. Appl Microbiol Biotechnol 1992; 37: 316-320.
46 H. Miyoshi, K. Yanagi, H. Fukuda, N. Ohshima. Long-term continuous culture of hepatocytes in a packed-bed reactor utilizing porous resin. Biotechnol Bioeng 1994; 43: 635-644
47 S.H. Yu, R. Buchholz, S.K. Kim. Encapsulation of rat hepatocyte spheroids for the development of artificial liver. Biotechnology Techniques 1999; 13: 609-614.
48 K. Yanagi, H. Miyoshi, N. Ohshima. Improvement of metabolic performance of hepatocytes culture in vitro in a packed-bed reactor for use as a bioartificial liver. ASAIO 1998; 44: m436-m440.
49 N. Ohshima, K. Yanagi, H. Miyoshi. Packed-bed type reactor to attain high density culture of hepatocytes for use as a bioartificial liver. Artificial Organs 1997; 21: 1169-1176.
50 F. J. Wu, J. R. Friend, C. C. Hsiao, J. Zilliox, W. Jeko, F. B. Cerra, and W. S. Hu. Efficient assembly of rat hepatocyte spheroids for tissue engineering applications. Biotechnol Bioeng 1996; 50: 404-415.
51 G. Zund, Q. Ye, S. P. Hoerstrup, A. Schoberlein, A. C. Schmid, J. grunenfelfer, P. Vogt, M. Turina. Tissue engineering in cardiovascular surgery: MTT, a rapid and reliable quantitative method to assess the optimal human cell seeding on polymeric meshes. European Journal of Cardio-thoracic Surgery 1999; 15: 519-524.
52 G. Ciapetti, E. Cenni, L. Pratelli, A. Pizzoferrato. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials 1993; 14: 359-364.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top