跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.173) 您好!臺灣時間:2023/10/02 06:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:雷青熒
研究生(外文):Chin-Ying Ray
論文名稱:活性氧於氯離子促進血管壓力素引發血管平滑肌細胞鈣離子釋出作用的角色
論文名稱(外文):Role of Reactive Oxygen Species in the Enhancing Effects of Cl- on Angiotensin II-Induced Ca2+ Release in Vascular Smooth Muscle Cells
指導教授:馬蘊華
指導教授(外文):Yunn-Hwa Ma
學位類別:碩士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:血管壓力素活性氧氯離子鈣離子釋出
外文關鍵詞:Angiotensin IIReactive oxygen speciesCl-Calcium release
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
Angiotensin II (Ang II)或其他的血管收縮素需要在氯離子的存在下,才能引起血管的收縮。Ang II引發血管平滑肌細胞內鈣離子的增加作用亦受到氯離子的調節,然而氯離子如何影響細胞內鈣離子的釋出其機制不是很清楚。我們以螢光染劑測定大鼠血管平滑肌細胞內鈣離子及活性氧的量,並進一步探討氯離子調節鈣離子釋出的作用是否經由細胞內活性氧的代謝而來。血管平滑肌細胞分別於不同氯離子濃度之生理鹽溶液中處理平衡後,移除細胞外之鈣離子,Ang II所引起的鈣離子釋出量,於氯離子120 mEq/L之生理鹽溶液約是20 mEq/L之1.5倍。此現象於Sprague Dawley (SD)大鼠及Spontaneously hypertensive rat (SHR)血管平滑肌細胞,皆可觀察測得。抗氧化劑vitamin E及N-acetylcysteine以及superoxide dismutase之抑制劑diethyldithiocarbamic acid可於高氯溶液中抑制Ang II引起的鈣離子釋出,顯示活性氧在Ang II引起的鈣離子訊息傳導過程中,可能具有相當的重要性。而Ang II的確可引發血管平滑肌細胞產生活性氧,其於高氯溶液中產生的量約為低氯溶液中之2.6倍。當外加H2O2於血管平滑肌細胞時,高氯溶液中以流式細胞儀所測得細胞內活性氧的量,在1至5分鐘時顯著的高於低氯溶液,但10分鐘後兩者的差異即消失。進一步實驗發現,在高氯溶液中,純化之catalase及血管平滑肌萃出物分解H2O2之速率僅為低氯溶液中之二分之一,顯示氯離子可能因藉由抑制catalase的活性,而增加細胞內活性氧的量。而SD大鼠其catalase的活性是SHR之3.5倍,因此氯離子對catalase之抑制作用可能於不同品種大鼠之血管平滑肌細胞所產生對氯離子的依賴有不同的重要性。我們推論,氯離子可能經由增加細胞內H2O2的穩定性而增強Ang II引發血管平滑肌鈣離子之釋出作用。

ABSTRACT
Cl- is essential for vasoconstriction induced by angiotensin II (Ang II) and other vasoconstrictors. Ang II-induced transient increase in intracellular [Ca2+] is also Cl--dependent. To further investigate whether Cl--dependent Ca2+ release from intracellular stores is mediated by altering metabolism of reactive oxygen species (ROS), intracellular Ca2+/ROS levels were measured using fluorescence dyes in cultured vascular smooth muscle cells (VSMC). After equilibration with solutions of variant [Cl-], VSMC was treated with Ang II in the absence of extracellular Ca2+ to induce Ca2+ release. The peak increase of released Ca2+ at 120 mEq/L of [Cl-] was 1.5 fold of that at 20 mEq/L of [Cl-] in VSMC from both Sprague Dawley (SD) and spontaneously hypertensive rat (SHR). Antioxidants, vitamin E and N-acetylcysteine, and a superoxide dismutase, diethyldithiocarbamic acid, significantly attenuated Ang II-induced Ca2+ release at high [Cl-] without altering those at low [Cl-]. In addition, Ang II-induced increase in intracellular ROS at high [Cl-] was 2.6 fold of that at low [Cl-]. Exogenous addition of H2O2 elicited a bigger increase in intracellular ROS with high vs. low [Cl-] one and five, but not ten min after addition of H2O2, suggesting that H2O2 degradation might be inhibited by Cl-. Further experiments demonstrated that the rate of H2O2 hydrolysis with high [Cl-] by both VSMC extract and purified catalase preparation, measured using spectrophotometer, was only half of that with low [Cl-], indicting that the activity of catalase was inhibited by Cl-. Catalase activity in VSMC from SD rat was 3 fold of that from SHR, suggesting that catalase may play a more important role in Cl--dependent Ca2+ release with SD rat than with SHR. In conclusion, Cl- may increase stability of H2O2 to enhance Ca2+ signaling in VSMC of rat.

目錄 (Contents)
指導教授推薦書
口試委員會審定書
授權書 iii
誌謝 iv
目錄 v
縮寫表 vi
中文摘要 viii
英文摘要 xi
緒論 1
材料與方法 10
結果 16
討論 23
圖表 31
參考文獻 46
附圖 57

參考文獻 (Reference)
1. Alexander R.W. and Griendling KK, Signal transduction in vascular smooth muscle., Journal of Hypertension - Supplement., 14 (1996) S51-S54.
2. Allen,A.M., Zhuo,J., and Mendelsohn,F.A., Localization of angiotensin AT1 and AT2 receptors. [Review] [80 refs], Journal of the American Society.of Nephrology., 10 Suppl 11 (1999) S23-S29.
3. Allen,A.M., Zhuo,J., and Mendelsohn,F.A., Localization and function of angiotensin AT1 receptors. [Review] [76 refs], American Journal of Hypertension, 13 (2000) 31S-38S.
4. Berk,B.C., Vascular Smooth Muscle Growth: Autocrine Growth Mechanisms, Phys.Rev., 81 (2001) 999-1030.
5. Berry,C., Hamilton,C.A., Brosnan,M.J., Magill,F.G., Berg,G.A., McMurray,J.J., and Dominiczak,A.F., Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries, Circulation, 101 (2000) 2206-2212.
6. Berry,C., Touyz,R., Dominiczak,A.F., Webb,R.C., and Johns,D.G., Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide, Am J Physiol Heart Circ Physiol, 281 (2001) H2337-H2365.
7. Chance,B., Sies,H., and Boveris,A., Hydroperoxide metabolism in mammalian organs, Phys.Rev., 59 (1979) 527-605.
8. Chen,X., Touyz,R.M., Park,J.B., and Schiffrin,E.L., Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR, Hypertension, 38 (2001) 606-611.
9. Chen,X.L., Tummala,P.E., Olbrych,M.T., Alexander,R.W., and Medford,R.M., Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells, Circ Res, 83 (1998) 952-959.
10. Clapham,D.E., Calcium signaling. [Review] [82 refs], Cell, 80 (1995) 259-268.
11. de Gasparo,M., Husain,A., Alexander,W., Catt,K.J., Chiu,A.T., Drew,M., Goodfriend,T., Harding,J.W., Inagami,T., and Timmermans,P.B., Proposed update of angiotensin receptor nomenclature, Hypertension, 25 (1995) 924-927.
12. Di Wang,H., Hope,S., Du,Y., Quinn,M.T., Cayatte,A., Pagano,P.J., and Cohen,R.A., Paracrine role of adventitial superoxide anion in mediating spontaneous tone of the isolated rat aorta in angiotensin II-induced hypertension, Hypertension, 33 (1999) 1225-1232.
13. Droge,W., Free Radicals in the Physiological Control of Cell Function, Phys.Rev., 82 (2002) 47-95.
14. Du,J., Peng,T., Scheidegger,K.J., and Delafontaine,P., Angiotensin II activation of insulin-like growth factor 1 receptor transcription is mediated by a tyrosine kinase-dependent redox-sensitive mechanism, Arteriosclerosis, Thrombosis & Vascular Biology, 19 (1999) 2119-2126.
15. Dzau,V.J., Multiple pathways of angiotensin production in the blood vessel wall: evidence, possibilities and hypotheses. [Review] [48 refs], Journal of Hypertension, 7 (1989) 933-936.
16. Finkel,T., Oxygen radicals and signaling. [Review] [55 refs], Current Opinion in Cell Biology, 10 (1998) 248-253.
17. Fridovich,I., Superoxide anion radical (O2-.), superoxide dismutases, and related matters. [Review] [76 refs], Journal of Biological Chemistry, 272 (1997) 18515-18517.
18. Fukai,T., Siegfried,M.R., Ushio-Fukai,M., Griendling,K.K., and Harrison,D.G., Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension, Circ Res, 85 (1999) 23-28.
19. Grover,A.K., Samson,S.E., Fomin,V.P., and Werstiuk,E.S., Effects of peroxide and superoxide on coronary artery: ANG II response and sarcoplasmic reticulum Ca2+ pump, American Journal of Physiology, 269 (1995) C546-C553.
20. Grover,A.K., Samson,S.E., and Misquitta,C.M., Sarco(endo)plasmic reticulum Ca2+ pump isoform SERCA3 is more resistant than SERCA2b to peroxide, American Journal of Physiology, 273 (1997) C420-C425.
21. Hannken,T., Schroeder,R., Stahl,R.A., and Wolf,G., Angiotensin II-mediated expression of p27Kip1 and induction of cellular hypertrophy in renal tubular cells depend on the generation of oxygen radicals [see comments], Kidney International, 54 (1998) 1923-1933.
22. Hansen,P.B., Jensen,B.L., and Skott,O., Chloride regulates afferent arteriolar contraction in response to depolarization, Hypertension, 32 (1998) 1066-1070.
23. Higashijima,T., Ferguson,K.M., and Sternweis,P.C., Regulation of hormone-sensitive GTP-dependent regulatory proteins by chloride, J.Biol.Chem., 262 (1987) 3597-3602.
24. Hu,Q., Zheng,G., Zweier,J.L., Deshpande,S., Irani,K., and Ziegelstein,R.C., NADPH oxidase activation increases the sensitivity of intracellular Ca2+ stores to inositol 1,4,5-trisphosphate in human endothelial cells, Journal of Biological Chemistry, 275 (2000) 15749-15757.
25. Inagami,T., A memorial to Robert Tiegerstedt: the centennial of renin discovery. [Review] [44 refs], Hypertension, 32 (1998) 953-957.
26. Jensen,B.L., Ellekvist,P., and Skott,O., Chloride is essential for contraction of afferent arterioles after agonists and potassium, Am.J.Physiol., 272 (1997) F389-F396.
27. Jensen,B.L. and Skott,O., Renin release from permeabilized juxtaglomerular cells is stimulated by chloride but not by low calcium, Am.J.Physiol., 266 (1994) F604-F611.
28. Karaki,H., Ozaki,H., Hori,M., Mitsui-Saito,M., Amano,K., Harada,K., Miyamoto,S., Nakazawa,H., Won,K.J., and Sato,K., Calcium movements, distribution, and functions in smooth muscle., Pharmacol.Rev., 49 (1997) 157-230.
29. Kempner,W., Treatment of hypertensive vascular disease with rice diet, American Journal of Medicine, 4 (1948) 545-577.
30. Kurtz,T.W., Al Bander,H.A., and Morris,R.C., Jr., "Salt-sensitive" essential hypertension in men. Is the sodium ion alone important?, New Eng.J.Med., 317 (1987) 1043-1048.
31. Laursen,J.B., Rajagopalan,S., Galis,Z., Tarpey,M., Freeman,B.A., and Harrison,D.G., Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension, Circulation, 95 (1997) 588-593.
32. Ma, Y.-H., Ives, H. E., and Morris, R. C., Jr. Chloride anion modulates agonist-induced calcium transients in vascular smooth muscle cells. Hypertension 30(3), 498. 1997.
33. 33. Ma, Y.-H. and S.Ling, S. Yi H. E. Ives and R. C. Morris, Jr. Chloride (Cl-)-sensitive gene expression and DNA synthesis in vascular smooth muscle cells. The FASEB J 12, A104. 1998.
34. Ma,Y.-H., Wei,H.-W., and Su,K.-H., Cl- enhances angiotensin II-induced Ca2+ release by modulating inositol(1,4,5)triphophate levels in vascular smooth muscle cells, Mol.Biol.Cell, 11 (2000) 251a.
35. MacGregor,G.A. and de Wardener,H.E., Salt,diet & health, Cambridge University Press, Cambridge, United Kindom, 1998.
36. MacGregor,G.A., Markandu,N.D., Sagnella,G.A., Singer,D.R., and Cappuccio,F.P., Double-blind study of three sodium intakes and long-term effects of sodium restriction in essential hypertension, Lancet, 2 (1989) 1244-1247.
37. Meyer,T.N., Gloy,J., Hug,M.J., Greger,R., Schollmeyer,P., and Pavenstadt,H., Hydrogen peroxide increases the intracellular calcium activity in rat mesangial cells in primary culture, Kidney International, 49 (1996) 388-395.
38. Miyahara,T. and Samejima,T., Effects of halide ions on porcine kidney catalase, Journal of Biochemistry, 91 (1982) 525-535.
39. Mulvany,M.J. and Aalkjaer,C., Structure and function of small arteries. [Review] [477 refs], Phys.Rev., 70 (1990) 921-961.
40. Nahmias,C. and Strosberg,A.D., The angiotensin AT2 receptor: searching for signal-transduction pathways and physiological function. [Review] [28 refs], Trends in Pharmacological.Sciences, 16 (1995) 223-225.
41. Oskarsson,H.J. and Heistad,D.D., Oxidative stress produced by angiotensin too. Implications for hypertension and vascular injury [editorial; comment], Circulation, 95 (1997) 557-559.
42. Ozono,R., Wang,Z.Q., Moore,A.F., Inagami,T., Siragy,H.M., and Carey,R.M., Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney, Hypertension, 30 (1997) 1238-1246.
43. Pueyo,M.E., N'Diaye,N., and Michel,J.B., Angiotensin II-elicited signal transduction via AT1 receptors in endothelial cells, Br.J.Pharmacol., 118 (1996) 79-84.
44. Rajagopalan,S., Kurz,S., Munzel,T., Tarpey,M., Freeman,B.A., Griendling,K.K., and Harrison,D.G., Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone, Journal of Clinical Investigation, 97 (1996) 1916-1923.
45. Sadoshima,J., Versatility of the angiotensin II type 1 receptor. [letter; comment.]. [Review] [35 refs], Circ Res, 82 (1998) 1352-1355.
46. Saris,J.J., van Dijk,M.A., Kroon,I., Schalekamp,M.A., and Danser,A.H., Functional importance of angiotensin-converting enzyme-dependent in situ angiotensin II generation in the human forearm, Hypertension, 35 (2000) 764-768.
47. Sato,Y., Ogata,E., and Fujita,T., Role of chloride in angiotensin II-induced salt-sensitive hypertension, Hypertension, 18 (1991) 622-629.
48. Shapiro,R., Holmquist,B., and Riordan,J.F., Anion activation of angiotensin converting enzyme: dependence on nature of substrate, Biochemistry, 22 (1983) 3850-3857.
49. Shapiro,R. and Riordan,J.F., Critical lysine residue at the chloride binding site of angiotensin converting enzyme, Biochem., 22 (1983) 5315-5321.
50. Siragy,H.M., The role of the AT2 receptor in hypertension. [Review] [46 refs], American Journal of Hypertension, 13 (2000) 62S-67S.
51. Skott,O. and Jensen,B.L., Involvement of chloride in renin secretion from isolated rat glomeruli, Am.J.Physiol., 262 (1992) F403-F410.
52. Steinbeck,M.J., Khan,A.U., and Karnovsky,M.J., Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film, Journal of Biological Chemistry, 268 (1993) 15649-15654.
53. Suzuki,Y.J. and Ford,G.D., Superoxide stimulates IP3-induced Ca2+ release from vascular smooth muscle sarcoplasmic reticulum, Am.J.Physiol., 262 (1992) H114-H116.
54. Suzuki,Y.J. and Ford,G.D., Redox regulation of signal transduction in cardiac and smooth muscle., Journal of Molecular.& Cellular.Cardiology, 31 (1999) 345-353.
55. Tanaka,M., Schmidlin,O., Yi,S.L., Bollen,A.W., and Morris,R.C., Jr., Genetically determined chloride-sensitive hypertension and stroke, Proc.Nat.Acad.Sci.U.S.A., 94 (1997) 14748-14752.
56. Tang,Z., Shou,I., Wang,L.N., Fukui,M., and Tomino,Y., Effects of antihypertensive drugs or glycemic control on antioxidant enzyme activities in spontaneously hypertensive rats with diabetes, Nephron, 76 (1997) 323-330.
57. Torrecillas,G., Boyano-Adanez,M.C., Medina,J., Parra,T., Griera,M., Lopez-Ongil,S., Arilla,E., Rodriguez-Puyol,M., and Rodriguez-Puyol,D., The role of hydrogen peroxide in the contractile response to angiotensin II, Mol Pharmacol, 59 (2001) 104-112.
58. Touyz,R.M. and Schiffrin,E.L., Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells, Hypertension, 34 (1999) 976-982.
59. Touyz,R.M. and Schiffrin,E.L., Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells, Pharmacol.Rev., 52 (2000) 639-672.
60. Ushio-Fukai,M., Alexander,R.W., Akers,M., and Griendling,K.K., p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy, Journal of Biological.Chemistry., 273 (1998) 15022-15029.
61. Ushio-Fukai,M., Griendling,K.K., Becker,P.L., Hilenski,L., Halleran,S., and Alexander,R.W., Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells, Arteriosclerosis, Thrombosis.& Vascular.Biology, 21 (2001) 489-495.
62. Ushio-Fukai,M., Zafari,A.M., Fukui,T., Ishizaka,N., and Griendling,K.K., p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells, Journal of Biological.Chemistry., 271 (1996) 23317-23321.
63. Wang,Z.Q., Millatt,L.J., Heiderstadt,N.T., Siragy,H.M., Johns,R.A., and Carey,R.M., Differential regulation of renal angiotensin subtype AT1A and AT2 receptor protein in rats with angiotensin-dependent hypertension, Hypertension, 33 (1999) 96-101.
64. Whitescarver,S.A., Ott,C.E., Jackson,B.A., Guthrie,G.P., Jr., and Kotchen,T.A., Salt-sensitive hypertension: contribution of chloride, Science, 223 (1984) 1430-1432.
65. Wu,L. and de Champlain,J., Superoxide anion-induced formation of inositol phosphates involves tyrosine kinase activation in smooth muscle cells from rat mesenteric artery, Biochemical & Biophysical Research Communications, 259 (1999) 239-243.
Yamada,T., Akishita,M., Pollman,M.J., Gibbons,G.H., Dzau,V.J., and Horiuchi,M., Angiotensin II type 2 receptor mediates vascular smooth muscle cell apoptosis and antagonizes angiotensin II type 1 receptor action: an in vitro gene transfer study, Life Sciences, 63 (1998) L289-L295.
67. Zafari,A.M., Ushio-Fukai,M., Akers,M., Yin,Q., Harrison,D.G., Taylor,W.R., and Griendling,K.K., Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy, Hypertension, 32 (1998) 488-495.
68. Zalba,G., San Jose,G., Beaumont,F.J., Fortuno,M.A., Fortuno,A., and Diez,J., Polymorphisms and promoter overactivity of the p22(phox) gene in vascular smooth muscle cells from spontaneously hypertensive rats, Circ Res, 88 (2001) 217-222.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top