(3.238.7.202) 您好!臺灣時間:2021/03/04 21:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳家和
論文名稱:網路購物商品配送車輛途程問題之研究
論文名稱(外文):The Study on Vehicle Routing Problem of Commodity Distribution of Tele-shopping
指導教授:黃泰林黃泰林引用關係
學位類別:碩士
校院名稱:長榮管理學院
系所名稱:經營管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:118
中文關鍵詞:網路購物軟性時窗車輛途程問題遺傳演算法禁忌搜尋法
外文關鍵詞:Tele-shoppingVehicle Routing Problem with Soft Time WindowsGenetic AlgorithmTabu Search
相關次數:
  • 被引用被引用:7
  • 點閱點閱:179
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
晚近,因電腦、通信技術之發展與通訊網路的投資建設,加上台灣上網人數的迅速激增,進而帶動整個電子商務市場的蓬勃發展,國內諸多廠商衡諸此一發展趨勢及為簡化銷售通路與降低成本,紛紛藉由網路購物方式來銷售商品與提供電子化的服務。以流通業而言,將改變原有之銷售通路,使產品銷售方式從傳統店鋪銷售轉為網路銷售通路,這場「通路革命」的影響,造成企業運作方式、運銷設施配置、市場範圍、實體配送與後勤管理方式的丕變。
就物流配送而言,網路購物迥異於傳統之購物方式,因網際網路的即時互動以及不受地域、時間限制之特性。使其消費者之空間分佈更廣、變異更大;因此,網路購物業者如何降低運銷成本與快速準確的配送商品,將是網路購物發展的關鍵成功因素之一。
車輛路線的規劃是物流車輛配送中重要的一環,故本研究擬針對網路購物業者委託專業物流公司配送為研究對象,探討網路購物商品配送之軟性時窗車輛途程問題(Vehicle Routing Problem with Soft Time Windows, VRPSTW)。而在求解車輛途程問題方面,近年來已發展出許多通用搜尋法,且各有其優點與使用上的限制。因此,本研究擬結合遺傳演算法(Genetic Algorithm, GA)與禁忌搜尋法(Tabu Search, TS)之優點,來提高問題的求解品質與效率。最後,本研究透過個案問題之實證研究來求取模式啟發解,並從事相關之分析探討,期能裨益於網路購物商品配送方式之分析研究。
In recent years, due to the increase of Internet population and rapid development of Electronic Commerce in Taiwan, domestic factories tend to sell products by tele-shopping in order to simplify sales route and reduce the cost. Though there is cooling phenomenon in lately development and even spume danger as well, the trend of combination of virtual Internet and real factories will become the main stream. In addition, the integration and research improvement of relative subjects like information flow; commercial flow; financial flow and logistics still give it a way to develop.
Tele-shopping is much different from traditional purchase, because the immediate interactions of Internet keep consumers from the restriction of locations and business hours. Moreover, proprietors of tele-shopping need to allocate goods to consumers with wider distribution and more variations. Consequently, how to lower the marketing cost and deliver products quickly and accurately will be one of the key success factors.
General commodity distribution of Tele-shopping mainly divides into two ways, one is company''s own motorcade, and the other is delivery by giving over to professional logistic companies. This study plans to aim at professional logistic companies that proprietors entrust as objects of study, and discuss Vehicle Routing Problem with Soft Time Windows of commodity distribution of Tele-shopping. As a result that VRPSTW belongs to NP-Hard problems, with certain high complicacy, we''re considered that it''s difficult to get the best solution by general mathematical calculations in a limited time. Therefore, this study purpose to adopt Genetic Algorithm and Tabu Search to obtain mode solution by actual study of individual problem, and deal with relative analysis discussion which is beneficial for commodity distribution method of tele-shopping.
目錄…………………………………………………………. i.
表目錄………………………………………………………. iii.
圖目錄………………………………………………………. vi.
中文摘要……………………………………………………. viii.
英文摘要……………………………………………………. x.
第壹章 緒論
第一節 研究背景與動機…………………………………….. 1
第二節 研究目的…………………………………………….. 2
第三節 研究方法…………………………………………….. 2
第四節 研究流程…………………………………………….. 3
第五節 研究範圍與限制…………………………………….. 5
第貳章 文獻探討
第一節 網路購物之物流配送……………………………….. 7
第二節 旅行推銷員問題…………………………………….. 9
第三節 車輛途程問題……………………………………….. 13
第四節 VRP之求解方法……………………………………. 17
第參章 研究方法
第一節 目標函數之構建…………………………………….. 24
第二節 數學規劃模式……………………………………….. 28
第三節 初始解之構建……………………………………….. 31
第四節 遺傳演算法………………………………………….. 32
第五節 禁忌搜尋法………………………………………….. 38
第六節 遺傳演算法與禁忌搜尋法之結合………………….. 44
第肆章 演算法績效之比較與實証分析
第一節 VRP測試例題之求解與分析……………………….. 49
第二節 VRPTW測試例題之求解與分析…………………… 72
第三節 個案實証分析……………………………………….. 83
第伍章 結論與建議
第一節 結論………………………………………………….. 92
第二節 建議………………………………………………….. 94
參考文獻…………………………………………………………. 96
附錄一 顧客資料……………………………………………... 103
1. 王文貞(民87),圖書配送車輛排程問題之研究,國立成功大學交通管理科學研究所碩士論文。
2. 王廷一(民86),企業線上行銷通路策略發展之研究,國立台灣大學商學研究所碩士論文。
3. 王保元(民89),物流中心冷凍食品配送模式之研究,朝陽科技大學工業工程管理研究所碩士論文。
4. 江慧儀(民87),網路購物之消費者需求與廠商實體配送之研究,國立交通大學運輸工程與管理研究所碩士論文。
5. 余國維(民86),消費者特性與產品特性對網際網路購物意願之影響,國立成功大學交通管理科學研究所。
6. 吳亮瑩(民88),單一物流中心車輛途程問題之研究─以遺傳演算法求解,國立成功大學工業管理研究所碩士論文。
7. 吳琴玲(民89),物流配送系統之區位-途程問題研究,國立雲林科技大學工業工程與管理研究所。
8. 李洪鑫(民89),含時間窗車輛途程問題各演算法適用範圍之探討,東海大學工業工程研究所碩士論文。
9. 官振華(民85),WWW使用者運用電子購物意願之研究:以人格特質、購買涉入與網路使用行為探討,國立中央大學資訊管理研究所碩士論文。
10. 林正章 等(民90),運輸網路分析,台北:五南圖書。
11. 張秀雲(民87),應用地理資訊系統於具時窗之貨物配送,國立成功大學工業管理研究所碩士論文。
12. 曹家瑞(民89),物流業配送系統之車輛指派與路徑規劃,國立台北科技大學生產系統工程與管理研究所碩士論文。
13. 陳春益(民85),「物流中心配送系統之研究─兼論車隊規模模式之建立」,行政院國科會專題研究計畫成果報告。
14. 陳國清(民87),GDA與RRT啟發式解法在VRP問題上之應用,交通大學交通運輸研究所碩士論文。
15. 陳煌儒等(民85),「企業運輸配送問題暨模式探討」,黎明學報,頁117-123。
16. 黃光瑞(民86),網路購物與傳統購物之零售商店區位選擇研究,國立成功大學交通管理科學研究所。
17. 廖忠雄等(民84),「物流中心之模糊多目標與混合型時窗限制配送車輛途程問題之研究」,中華民國工業工程學會八十四年會論文集,頁625-632。
18. 蔣敏玲(民88),網路購物商品之配送策略研究,國立交通大學運輸工程與管理研究所碩士論文。
19. 韓復華、卓裕仁、陳國清(民88),「五種巨集啟發式解法在VRP問題上之應用與比較」,中華民國第四屆運輸網路研討會論文集,頁72-82。
20. 簡世釗(民90),時窗與容量限制下車輛途程問題之研究,國立成功大學工業管理研究所碩士論文。
21. 顏成佑(民89),基因演算法解算軟性時窗車輛途程問題之研究,元智大學工業工程研究所碩士論文。
22. 饒怡莊(民89),應用地理資訊系統於車輛途程問題之研究,元智大學工業工程研究所碩士論文。
23. Bartholdi, J. J. and Platzman, L. K. (1988), “Heurisitics Based on Space Filling Curves for Combinatorial Problems in Euclidean Space,” Management Science. 34, pp. 291-305.
24. Bodin, L. and Golden, B. (1981), “Classification in Vehicle Routing and Scheduling,” Networks. 11, pp. 97-108.
25. Bodin, L., Golden, B., Assad, A. and Ball, M. (1983), “Routing and Scheduling of Vehicles and Crews: The State of The Art,” Computers & Operations Research. 10, pp.63-211.
26. Christofides, N. and Eilon S. (1969), “ An Algorithm for Vehicle Dispatching Problem,” Operational Research Quarterly. 20(3), pp. 309-318.
27. Christofides, N., Mingozzi, A., Toth, P. and Sandi (1979), Combinatorial Optimization, John Wiley & Sons, Inc.
28. Clark, G. and Wright, J. W. (1964), “Scheduling of Vehicles from a Central Depot to a Number of Delivery Points,” Operations Research. 12, pp. 568-581.
29. Desrochers, M., Desorsiers, J. and Solomon, M. M. (1992), “A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows,” Operations Research. 40, pp. 342-354.
30. Fisher, M. L. (1995), “Vehicle Routing,” Chapter 1 in Ball, M., Magnati, T., Monma, C. and Nemhauser, G., (eds) Network Routing, Handbooks in Operations Research and Management Science. 8, pp. 1-33.
31. Fisher, M. L. and Jailkumar, R. (1981), “A Generalized Assignment Heuristic for Vehicle Routing,” Netorks. 11, pp.109-124.
32. Gendreau, M., Hertz, A. and Laporte, G. (1944), “A Tabu Search Heuristic for the Vehicle Routing Problem,” Management Science. 40(10), pp. 1276-1289.
33. Gillett, B. E. and Miller, L. R. (1974), “A Heuristic Algorithm for the Vehicle-dispatch Problem,” Operations Research. 22, pp. 340-349.
34. Glover, F. (1989), “Tabu Search —PartⅠ,” ORSA Journal on Computing. 1, pp. 190-206.
35. Glover, F. (1990), “Tabu Search —PartⅡ,” ORSA Journal on Computing. 2, pp. 4-32.
36. Goldberg, D. E. (1989), Genetic Algorithm in Search, Optimization and Machine Learning, Addison-Wesley, Reading, Massachusetts.
37. Golden, B. L. and Assad, A. A. (1988), Vehicle Routing: Methods and Studies, Elsevier Science Publishers B.V.
38. Holland, J. (1975), Adaptation in Natural and Artificial Systems.
39. Knox, J. (1994), “Tabu Search Performance on the Symmetric TSP,” Computer and Operations Research. 21(8).
40. Koppelman, F., Salomon I. and Proussaloglou, K. (1991), “Teleshopping or Store Shopping ? A Choice Model for Forecasting the Use of New Telecommunications-based Services,” Environment and Planning B: Planning and Design. 18, pp. 473-489.
41. Laporte, G. (1992), “The Traveling Salesman Problem: An Overview of Exact and Approximate Algorithms,” European Journal of Operational Research. 59, pp.231-247.
42. Laporte, G. (1992), “The Vehicle Routing Problem: An Overview of Exact and Approximate Algorithms,” European Journal of Operational Research. 59, pp.345-358.
43. Lawler, E., Lenstra, J., Rinnooy, Kan A. and Shmoys, D. (1985), The Traveling Salesman Problem, John Wiley & Sons, Inc.
44. Lentra, J. K. and Rinnooy, Kan A. H. G. (1981), “Compplexity of Vehicle Routing and Scheduling Problems,” Networks. 11, pp.221-227.
45. Lin, S. (1965), “ Computer Solution of the Traveling salesman Problem,” The Bell System Technical Journal. 44, pp. 2245-2269.
46. Lin, S. and Kernighan, B. (1973), “An Efficient Heuristic Algorithm for the Traveling Salesman Problem,” Operations Research. 93, pp. 121-134.
47. Manski, C. and Salomon, I. (1987), “The Demand for Teleshopping: An application of Discrete Choice Models,” Regional Science and Urban Economics. 17(1), pp.109-121.
48. Oliver, I. M., Smith, D, J. and Holland, J. R. C. (1987), “ A Study of Permutation Crossover Operations on the Traveling Salesman Problem,” In Proceeding of the International Conference on Genetic Algorithms and Their Application, pp. 224-230.
49. Osman, I. H. (1993), “Metastrategy Simulated Annealing and Tabu Search Algorithms for the Vehicle Routing Problem,” Annals of Operations Research. 41, pp. 421-451.
50. Pavitt, (1997), “Retail and the Super High Street: the Future of the Electronic Home Shopping Industry,” International Journal of Retail & Distribution Management. 25(1), pp. 38-43.
51. Potvin, J. Y. and Bengio, S. (1996), “The Vehicle Routing Problem with Time Windows-Part Ⅱ: Genetic Search,” INFORMS Journal on Computing. 8, pp.165-172.
52. Potvin, J. Y., Dube, D. and Robillard, C. (1996), “A Hybird to Vehicle Routing Using Neural Networks and Genetic Algorithms,” Applied Intelligence. 6, pp. 241-252.
53. Reynolds, (1997), “Retailing in Computer-mediated Environments: Electronic Commerce Across Europe,” International Journal of Retail & Distribution Management. 25(1), pp. 29-37.
54. Rochat, Y. and Taillard, E. (1995), “Probabilistic Diversification and Intensification in Local Search for Vehicle Routing,” Journal of Heuristics. 1, pp. 147-6-167.
55. Rowley, J. (1996), “Retailing and Sopping on the Internet,” International Journal of Retail & Distribution Management. 24(3), pp.26-37.
56. Salomon, I. and Koppelman, F. (1988), “A Framework for Studying Teleshopping versus Store Shopping,” Transportation Research A. 22A(4), pp. 247-255.
57. Sexton, T. R. and Choi, Y. M. (1986), “Pickup and Delivery of Partial Loads with Soft Time Windows,” American Journal of Mathematical and Management Sciences. 6(3), pp. 369-398.
58. Solomon, M. M. (1987), “Algorithm for the Vehicle Routing and Scheduling Problems with Time Window Constraints,” Operations Research. 35(2), pp.254-265.
59. Solomon, M. M. and Desrosiers, J. (1988), “Time Windows Constrained Routing and Scheduling Problems,” Transportation Science. 22(1), pp. 1-13.
60. Taillard, E. et al. (1997), ”A Tabu Search Heuristic for The Vehicle Routing Problems with Soft Time Windows,” Transportation Science. 31(2), pp.170-186.
61. Thangiah, S. R., Osman, I. H. and Sun, T. (1994), “Hybrid Genetic Algorithm, Simulated Annealing and Tabu Search Methods for Vehicle Routing Problems with Time Windows,” Technical Report UKC/OR94/4, Institute of Mathematics & Statistics, University of Kent, CanterBury, UK.
62. Xu, J. and Kelly, J.P. (1996), “A Network Flow - Based Tabu Search Heuristic for the Vehicle Routing Problem,” Transportation Science. 30(4), pp. 379-393.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔