(3.239.159.107) 您好!臺灣時間:2021/03/08 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王貴芳
研究生(外文):Qwa-Fun Wang
論文名稱:絞股藍皂誘發人類肝癌細胞凋亡之分子機轉
論文名稱(外文):The Molecular Mechanism of Gypenosides-induced Apoptosis in Human Hepatoma Cells
指導教授:陳榮洲陳榮洲引用關係徐士蘭徐士蘭引用關係
指導教授(外文):Jung-Chou ChenShin-Lan Hsu
學位類別:博士
校院名稱:中國醫藥學院
系所名稱:中國醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:100
中文關鍵詞:絞股藍皂細胞凋亡
外文關鍵詞:caspaseBaxBadBcl-2
相關次數:
  • 被引用被引用:5
  • 點閱點閱:207
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
絞股藍皂是絞股藍的主要有效成分,現代藥理證實絞股藍有抗癌作用,在動物及體外實驗證明,具有明顯的抑制癌細胞作用,然而絞股藍皂抗癌作用之機轉尚無文獻報導,因此本論文為進一步闡明絞股藍抗癌的作用機制,從細胞和基因層次,探討絞股藍皂誘發人類肝癌細胞凋亡之調控機轉。實驗以人類肝癌細胞株(Huh-7,Hep3B,HA22T/VGA),結果發現絞股藍皂皆能抑制這三株肝癌細胞生長,且絞股藍皂抑制細胞生長數,隨濃度與時間,皆有降低之效應。進一步以DAPI與TUNEL螢光染色分析法,發現細胞膜形成皺縮、細胞核染色質濃縮、細胞核碎裂和染色體DNA斷裂,確定細胞進行細胞凋亡形狀特徵。針對誘發細胞凋亡之調控路徑,在caspase家族方面,發現絞股藍皂能增加caspase-1、9、3之活性,但不影響casapas-8之活性,而且用caspase 抑制劑 (z-VAD-fmk),發現能抑制絞股藍皂誘發caspase之活性,更確定絞股藍皂誘發caspase之路徑。絞股藍皂能誘發caspase-1、9活性,其為caspase-3之上游(upstream),能誘發caspase-3活性增加而執行細胞凋亡,它能造成cytochrome c從粒腺體外膜上釋放至細胞質,造成具DNA修補基因體功能之PARP被分解,使染色體DNA斷裂成片斷形成細胞凋亡。在Bcl-2 家族方面,絞股藍皂能增加Bax、Bak基因表現,降低Bcl-2基因表現,但不改變Bag-1基因表現。在Fas與Fas Ligand訊號接收系統方面,結果發現絞股藍皂不影響Fas基因表現,且不影響其下游之casapase-8之活性,顯示絞股藍皂誘發細胞凋亡之調控路徑與Fas、Fas Ligand系統無關。在p53抑癌基因方面,結果發現絞股藍皂不影響P53抑癌基因表現,無論是HA22T/VGA (wild type p53)、Huh-7 (mutant pP53) 或Hep3B(完全沒有p53蛋白表現),顯示絞股藍皂誘發細胞凋亡之調控路徑與p53無關。綜合上述結果顯示,絞股藍皂誘發細胞凋亡之調控路徑,主要是由於促進細胞凋亡功能的基因Bax、Bak大量表現,且抑制細胞凋亡功能的基因Bcl-2之表現減少,促使cytochrome c從粒腺體外膜上釋放至細胞質中,使得caspase家族活化,進而誘發細胞凋亡。
Gypenosides are triterpenoid saponins contained in an extract from Gynostemma pentaphyllum Makino and reported to induce apoptosis inhuman hepatoma cells. However, the molecular mechanism underlying the Gypenosides-induced apoptotic process is unclear. To understand the molecular mechanism of Gypenosides-inducced apoptosis, we had detected the caspase cascade, Bcl-2 family, Fas/Fas Ligand system, and p53 gene regulation. In this study, we have observed that treatment with Gypenosides resulted in a dose- and time-dependent decrease in cell viability. We found that Gypenosides-induced apoptosis in human hepatoma Huh-7, Hep3B and HA22T cell lines as evidenced by morphological changes, 4’ ,6’- diamidino-2-phenylindole (DAPI) staining and in situ terminal transferase-mediated dUTP-fluorescensinnick end-labeling (TUNEL) assay. In Bcl-2 family, our data demonstrated that Gypenosides -induced apoptotic cell death was accompanied by up-regulation of Bax, Bak and Bcl-XL , and down-regulation of Bcl-2 and Bad, while it had no effect on the level of Bag-1 protein. In caspase cascade, moreover, Gypenosides treatment caused the release of mitochondrial cytochrome c to cytosol and sequential activation of caspases, including caspase-1, -9 and -3, then leading to cleavage of poly-ADP-ribose polymerase. Furthermore, the Gypenosides-induced apoptosis was markedly blocked by the broad-spectrum caspase inhibitor, z-VAD-fmk. In Fas/Fas Ligand system, our results showed that caspase-8 was not activated upon Gypenosides treatment, and Gypenosides did not affect the expression levels of Fas and Fas Ligand proteins, indicating that stimulation of Fas/Fas Ligand and activation of caspase-8 did not involve in Gyp-induced caspase-3 activation and apoptosis. In p53 gene regulation, no accumulation of wild-type p53 protein was detected upon treatment of HA22T cells with Gyp. In addition, cells lacking functional p53 (Hep3B and Huh-7 cells) exhibit a similar response to Gypenosides treatment as do cells with functional p53 (HA22T cells). These results suggest that Gypenosides-mediated up-regulation of Bax protein and apoptosis occurred independence of p53 protein.Taken together, these results suggest that treatment of human hepatoma cells with Gypenosides induced apoptosis through the up-regulation of Bax and Bak, and down-regulation of Bcl-2, release of mitochondrial cytochrome c and activation of caspase cascade.
第一章 前 言 1
第二章 文 獻 探 討 4
第一節 絞股藍與絞股藍皂 4
第二節 細胞凋亡 21
第三章 材 料 與 方 法 36
第四章 結 果 43
一、劑量效應之生長曲線(DOSE-DEPENDENT CELL VIABILITY) 43
二、時間效應之生長曲線(TIME-DEPENDENT CELL VIABILITY) 43
三、凋亡細胞核之螢光染色(DAPI AND TUNEL STAINING ASSAY) 45
四、絞股藍皂引起CASPASE活化 (GYPENOSIDES-INDUCED ACTIVATION OF CASPASES) 48
五、CASPASE 抑制劑 (Z-VAD-FMK)抑制絞股藍皂誘發細胞凋亡 (INHIBITION OF CASPASE ACTIVITY IN GYPENOSIDES-INDUCED APOPTOSIS BY CASPASE INHIBITORS) 56
六、CYTOCHROME C之釋出先於CASPASE-3活化(RELEASE OF CYTOCHROME C OCCURRED PRIOR TO THE ACTIVATION OF CASPASES) 56
七、絞股藍皂對BCL-2 家族蛋白質表現之影響(BCL-2 FAMILY PROTEIN EXPRESSION BY GYPENOSIDES) 59
八、絞股藍皂對P53抑癌基因蛋白質表現之影響(REGULATION OF P53 PROTEIN EXPRESSION BY GYPENOSIDES) 65
九、絞股藍皂對FAS基因蛋白質表現之影響(REGULATION OF FAS PROTEIN EXPRESSION BY GYPENOSIDES) 67
十、絞股藍皂對MAPK家族基因表現之影響(Regulation of MAPK system expression by Gypenosides) 67
第五章 討 論 71
第六章 結 論 78
參 考 文 獻 81
英 文 摘 要 99
謝 辭 100
附 錄 101
1. Arends MJ, Wyllie AH. Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol. 1991;32:223-254.
2. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:615-631.
3. Hu L, Chen Z, Xie Y. New triterpenoid saponins from Gynostemma pentaphyllum. J Nat Prod. 1996;59 :1143-1145 .
4. Fang ZP, Zeng XY. Structure of gypenosides A from Gynostemma pentaphylum Makino. Yao Hsueh Pao Acta Pharm Sinica. 1996;31:680-683.
5. 王玉琴、張秋菊、徐世明:絞股藍總皂的抗腫瘤作用。中西醫結合雜誌 1988;8(5):286-287.
6. 婁振嶺、陳偉民、馬麗萍:絞股藍多糖對腫瘤細胞的抑制作用。河南醫科大學學報 1996;31(1):87-88.
7. 王志潔、李新志、程井辰:絞股藍抑制艾氏腹水癌生長的免疫機能。腫瘤 1990;10(6):246-249.
8. 樑軍、湯小芳、魏小龍:絞股藍總皂對Lewis肺癌荷小鼠腫瘤生長及免疫功能的影響。藥學實踐雜誌1999;17(5):179-281.
9. 陳葳、李廣元:絞股藍總皂對體外培養肝癌細胞核酸和蛋白質合成的影響。西安醫科大學學報 1993;14(2):41-42 .
10. 金梅、薛祥驥:絞股藍提取液對人直腸腺癌細胞系的影響。現代應用藥學 1992;9(2):49-52.
11. 謝志忠、曹建國、黃紅林、朱炳陽、周軍民、劉潔衡、庹勤慧、唐小卿:絞股藍總皂及與化療藥合用對體外培養慢粒急性變病人癌細胞增殖的影響。衡陽醫學院學報 1998;26(1):10-12.
12. 韓明權、劉嘉湘、高虹:24味中藥對人肺腺癌細胞核酸和蛋白質及細胞周期的影響觀察。中國中西醫結合雜誌 1995;15(3):147-149.
13. 劉華、司履生:絞股藍總皂對體外培養肺癌細胞的抑制作用。西安醫科大學學報 1994 15(4):346-348.
14. 閻軍峰、李金榮、胡傳真、劉剛:絞股藍總皂對體外培養人口腔鱗癌頸淋巴結轉移癌細胞抑制作用的研究。臨床口腔醫學雜誌 1998;14(3):140-141.
15. Chen JC, Chung JG, Chen LD. Gypenoside induces apoptosis in human Hep3B and HA22T tumour cells. Cytobios. 1999;100(393):37-48.
16. 齊剛、張荊:絞股藍研究新進展。中草藥1995;26(7):377-380.
17. 陳建國:絞股藍與其混淆品烏蘞莓的本草考釋。中草藥1990;21(6):40-42.
18. 丁樹利、朱兆儀、李勇:絞股藍及其同屬植物的生藥學研究。中國醫藥學雜誌1994;29(2):79-83.
19. 陰進、郭力弓:中藥現代研究與臨床應用。學苑出版社,北京1995;524-534.
20. Kazuko Y, Masahiro A, Kuki K, Tsunematsu T, Shigenobu A. Studies on the Cucurbitaceae Plants ⅩⅤⅠⅠⅠ.On the Sponin Constituents of Gynostemma pentaphyllum Makino. Shoyakugaku Zasshi. 1987;107(5):361-366.
21. Yoshiyuki K, Hiromicchi O, Shigeru A, Tsunematsu T. Effect of Crude saponins of Gynostemma pentaphyllum on lipid metabolism. Shoyakugaku Zasshi. 1983;37(3):272-275.
22. 程榮珍、張紀立、王才益:絞股藍皂對家兔脂質代謝的影響。現代應用藥學 1995;13(2):12-13.
23. 載漢雲、孟慶玉、朱捍國:絞股藍總皂對各種脂蛋白的影響。中草藥 1986;20(4):172-174.
24. 齊剛、張莉、李長齡:絞股藍總皂對高脂動物血清脂蛋白、肝臟及動脈粥樣硬化形成的影響。中國中藥雜誌 1996;21(9):562-564.
25. 韓曉燕、衛洪波、連建學:絞股藍總皂對大鼠實驗性高脂血症的影響。 河南醫學研究 1996;5(2):113-116.
26. 李林、邢善田、周金黃:絞股藍總皂對離體大鼠肝臟脂質過氧化及膜流動性損傷的保護作用。中國藥理學通報 1991;7(5):341-344.
27. 雷肖環、楊品純:絞股藍對小鼠血漿環核甘酸含量的影響。廣西中醫藥 1990;13(4):45.
28. 黃紅林、尹衛東、廖端芳、陳劍雄、唐小卿、李波平、曹建國、余麟:絞股藍總皂對兔實驗性動脈粥樣硬化斑塊形成的影響。中國動脈硬化雜誌 1998;6(4):287-291.
29. 張秋菊、廖端芳、尹衛東:絞股藍總皂和維生素 E對實驗性動脈粥樣硬化兔的肝臟和心肌中SOD及LPO含量的影響。衡陽醫學院學報 1995;23(1):8-12.
30. 吳基良、邱培倫、劉俊田:絞股藍總皂對家兔血小板聚集釋放及 c-AMP 水平的影響。中國藥理學與毒理學雜誌 1990;4(1):54-56.
31. 李林、金有豫:絞股藍提取物對家兔血小板聚集和花生四烯酸代謝的影響。中國藥理學通報 1989;5(4):213-217.
32. Junichi T, Teruaki I, Tskashi K, Yuji S, Yuji I. A new platelet aggregation factor from Gynostemma pentaphyllum Makino. Chem Pharm Bull. 1985;33(12):5568-5571.
33. 胡寶春、曾明新、李曉清:絞股藍總皂對原代培養大鼠肝細胞四氯化碳損傷的影響。衡陽醫學院學報 1996;24(4):268-272.
34. Lin JM, Lin CC, Chiu HF, Yang JJ, Lee SG. Evaluation of the anti-inflammatory and liver-protective effects of anoectochilus formosanus, ganoderma lucidum and gynostemma pentaphyllum in rats. Am J Chin Med. 1993;21:59-69.
35. Lin CC, Huang PC, Lin JM. Antioxidant and hepatoprotective effects of Anoectochilus formosanus and Gynostemma pentaphyllum. Am J Chin Med. 2000;28: 87-96.
36. Chen JC, Tsai CC, Chen LD, Chen HH, Wang WC. Herapeutic effect of gypenoside on chronic liver injury and fibrosis induced by CCl4 in rats. Am J Chin Med. 2000;28(2):175-185.
37. 張崇泉、楊曉慧、徐琳本、朱紹雄:絞股藍總皂免疫調節作用的研究。 中西醫結合雜誌 1990;10(20):96-98.
38. 劉曉松、甘駿、黃仁彬:廣西絞股藍總皂的藥理研究。中成藥 1989;11(8):27-29.
39. 段涇云:絞股藍抗炎免疫藥理作用。陜西中醫 1991;12(1):38-40.
40. 婁振嶺、馬麗萍、張曉琴:絞股藍多糖生物學作用的研究。河南腫瘤學雜誌 1996;9(3):168-171.
41. 壽芝娟:絞股藍總皂對小鼠肺泡巨噬細胞形態的影響。溫洲學院學報 1990;20(1):13-18.
42. 林曉明、馮建英、龍珠:銀耳、茯苓、絞股藍對小鼠免疫功能和清除自由基作用。北京醫科大學學報 1995;27(6):445-450.
43. 廖瑞芳:絞股藍總皂對體外小鼠脾細胞轉化及DNA多聚活性的影響。國藥理學通報 1995;16(4):322-325.
44. 耿文奎、楊玉英、樑堅:絞股藍提取液對大鼠T淋巴細胞及脂類代謝的影響。廣西醫學 1988;10(1):8-15.
45. 陳玉春、高依卿:絞股藍總皂刺激淋巴細胞活化及及分泌IL-2。中藥材 1994;17(4):34-36.
46. 章翰、李鳴、邵靜芳、楊敬、藍順碧:應激對免疫活性細胞影響及對絞股藍的作用。中國實驗臨床免疫學 1993:5(5):20-25.
47. 劉俊達、王舒、劉紅濤、楊莉萍、南國柱:中藥皂成份對老人淋巴細胞功能作用。中國藥學 1994;29(12):717-721.
48. 魏云、劉禮意、吉藍:絞股藍總皂升高白細胞作用探討。中草藥 1993;24(7):382-383.
49. 龔國清、張純、周曙:絞股藍總皂對小鼠外周白細胞數及吞噬發光的影。中國藥科大學學報 1992;23(2):100-102.
50. 陳志峰、王俊茹、馬智、王濟民:絞股藍治療癌症的實驗與臨床研究。中西醫結合外科雜誌 1996;2(2):110-112.
51. 賓曉衣:絞股藍總皂對小鼠脾自然殺傷細胞活性的影響。衡陽醫學院學報 1994;22(2):127-129.
52. 余素清、劉京生、韓彩芝、魏麗君:複方絞股藍提高乳癌患者NK細胞活性。中醫藥研究 1997;13(4):7-8.
53. 劉倩嫻、陳妙歡:絞股藍總皂對小鼠產生INF-γ的影響。廣州中醫學院學報 1991;8(2):212-217.
54. 趙英仁、樑銦、謝蔚玫:絞股藍總皂治療慢性乙型肝炎機制的研究。西北藥學雜誌 1997;12(1):30-31.
55. 鄭源龐、龔康敏、姚雪艷:絞股藍沖劑治療高脂血症 42 例臨床初步觀察。中國藥理與臨床 1980;6(4):43-45.
56. 周清發、楊世興、劉銳、喬成林:絞股藍治療腎病綜合征高血脂的臨床觀察。陜西中醫 1991;12(1):6-7.
57. 林為民、王端:絞股藍治療高血脂症30例療效觀察。中西醫結合雜誌 1991;11(11):681-682.
58. 周宏研、謝秀梅、孫明:絞股藍治療高脂血症的療效。湖南醫學 1991;8(5).
59. 錢寶慶、周平、孫西路:絞股藍口服液治療高脂血症 60 例。中西醫結合雜誌 1990;10(3):166-167.
60. 張英、華瓊、孫光武:七葉膽總皂膠囊(片)降脂療效臨床觀察90例。中國中醫藥信息雜誌 1999;6(3):35-36.
61. 陳宏衛、王守麗、陳艷:絞股藍總治療糖尿病高脂血症46 例臨床分析。實用中西醫結合雜誌 19977;10(19):1879-1880.
62. 朱志明、趙國祥、鄒賓、邱建成、李明道、蔡蘭桂、何福清、朱偉光:絞股藍總皂膠囊抗衰老觀察報告。湖南中醫雜誌 1991;(2):56-58.
63. 李佃貴:絞股藍沖劑治療慢性萎縮性胃炎151例,中西醫結合雜誌 1991;11(12):713.
64. 王會仍、張麗珍、馬壽思、張世玉、俞會生、陳玉芳、濮惠芬、魏睦生:絞股藍沖劑對白細胞減少症治療保健作用的臨床觀察。新中醫1991;23(1):36-37.
65. 劉少翔、張秀雲、陳志峰、張雪莉、侯浚、王俊茹、王濟民:絞股藍治療放療、化療引起白細胞減少的臨床觀察。中國醫藥學報 1992;7(2):35-36.
66. 潘毓仁、潘躍飛、徐家辛:複方絞股藍合劑治療慢性乙型肝炎80例。浙江中醫雜誌 1997;12(1):150-151.
67. 朱本忠:絞股藍沖劑治療慢性乙型肝炎100例。安徽中醫學院學報  1994;13(3):7-8.
68. 王勁、曹寶珍、應栩華、周振鶴:絞股藍沖劑對19例惡性腫瘤患者免疫功能的影響觀察。浙江中醫雜誌 1989;(10):449-450.
69. 王俊茹、趙聚賓、華宏觀、閻付榮、李建都、楊保平:複方絞股藍湯預防癌症復發轉移的臨床研究。浙江中醫雜誌 1993;(12):529-530.
70. 張念志、劉麗華、周宜軒、顧健霞:中藥加化療治療肺癌15例療效分析。中國實驗方劑學雜誌 1998;4(6):63-64.
71. 劉少翔、陳志峰、胡海山:中藥結合化療治療晚期癌症200例對比觀察。遼寧中醫雜誌 1995;22(6):273-274.
72. 潘敏求、黃立中、曾鬆林:絞股藍總皂減低化療毒副反應 93 例臨床觀察。湖南中醫雜誌1993;9(2):2-4.
73. kroemer G, Petit PX, Zamzami N, Vayssiere J, Migonotte B. The biochemistry of apoptossis. FASEB J. 1995; 9:1277-1278.
74. Ellis RE, Yuan JY, Horvitz HR. Mechanisms and functions of cell death. Annu Rev Cell Biol. 1991; 7 :663-698.
75. Kerr JF, Winterford CM, Harmon BV. Apoptosis. Cancer. 1994;73:2013-2023.
76. Barry MA, Behnke CA, Eastman A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol. 1990;40:2353-2357.
77. Bonavida B, Tsuchitani T, Safrit JT, Zighelboim J. Hierarchy of tumor cell sensitivity and resistance to cytolysis by TNF, cytotoxic cells, bacterial toxins, and cytotoxic drugs. In: Tumor Necrosis Factor: Structure, Mechanism of Action, Role in Disease and Therapy. Edited by B. Bonavida and G. Granger. Basel: Karger, pp. 125-132, 1990.
78. Horvitz HR, Shaham S, Hengartner MO. The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harbor Symp Quant Biol. 1994;59:377-385.
79. Hengartner MO, Ellis RE, Horvitz HR. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature. 1992;356:494-499.
80. Kelekar A, Thompson CB. Bcl-2 family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 1998;8:324-330.
81. Shima Y, Nishio N, Ogata A, Fujii Y, Yoshizaki K, Kishimoto T. Myeloma cells express Fas antigen/APO-1 (CD95) but only some are sensitive to anti-Fas antibody resulting in apoptosis. Blood. 1995;85:757-761.
82. Sato T, Irie S, Kitada S, Reed JC. FAP-1: A protein tyrosine phosphatase that associates with Fas. Science. 1995;268:411-416.
83. Owen-Schaub LB, Radinsky R, Kruzel E, Berry K, Yonehara S. Anti-Fas on nonhematopoietic tumors: levels of Fas/APO-1 and bcl-2 are not predictive of biological responsiveness. Cancer Res. 1994;54:1580-1586.
84. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima SI, Sameshima M, Hase A, Seto Y, Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 1991;66:233-240.
85. Watanabe-Fukunaga R, Brannan CI, Itoh N, Yonehara S, Copeland NG, Jenkins NA, Nagata S. The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J Immunol. 1992;148:1274-1281.
86. Mizutani Y, Fukumoto M, Bonavida B, Yoshida O. Enhancement of sensitivity of urinary bladder tumor cells to cisplatin by c-myc antisense oligonucleotide. Cancer. 1994;74:1546-1550.
87. Sentman CL, Shutter JR, Hockenberry D, Kanagawa O, Korsmeyer SJ. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell. 1991;67:879-882
88. Martin SJ, Green DR. Protease activation during apoptosis: death by a thousand cuts? Cell. 1995;82:349-352.
89. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. The Elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Ce11. 1993;81:801-809.
90. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995;376:37-43.
91. Tewari M, Quan LT, Orourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit V M. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate PARP(poly ADP-ribose polymerase). Cell. 1995;81:801-809.
92. Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell. 1997;89:175-184..
93. Solange D, Jean-Claude M. Mitochondria as the central control point of appoptosis. Trends cell biol. 2000;10:369-377.
94. Kuk RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of ytohrome c from mitochrondria: a primary site for Bl-2 regulation of apoptosis. Science. 1997;275:1132-1136.
95. Marchetti PM, Castedo SA, Susin SA, Zamzami N, Hirsch T. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med. 1996;184: 1155-1160.
96. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH. A novel MORT1/FADD-interacting protease, in Fas/APO-1 and TNF recepter-induced cell death. Cell. 1996;85:803-815.
97. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12 mediates endoplasmic reticulum sepecific apoptosis and cytotoxicity by amyloid-b. Nature. 2001;403:98-103.
98. Li P. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479-489.
99. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitchondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275:1132-1136.
100. Zou H, Henzel WJ, Lui X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997;90:405-413.
101. Kumar S, Levin MF. The ICE family of cysteine proteases as effector of cell death. Cell death Differ. 1996;3: 255-267.
102. Vaux DL, Cory S, Adams JM. bcl-2 gene promotes hemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988;335:440-442.
103. Hengartner MO, Horvitz H R. C.Elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell. 1994;76:665-676.
104. Atan G, Jams M. McDonnel L, Stanley J. Bcl-2 family members and the mitochondria in apoptosis. Genes and dev. 1999;13:1899-1911.
105. Kharbanda S, Pandey P, Schofield L, Israels S, Roncinske R, Yoshida K, Bharti A, Yuan ZM, Saxena S, Weichselbaum R, Nalin C, Kufe D. Role for Bcl-xL as an inhibitor of cytosolic cytochrome C accumulation in DNA damage-induced apoptosis. Proc Natl Acad Sci USA. 1997;94:6939-6942.
106. Wood DE, Newcomb E W. Cleavage of Bax enhances its cell death function. Exp Cell Res. 2000;256:375-382.
107. Eskes R, Desagher S, Antonsson B, Martinou JC.Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol. 2000;20:929-935.
108. Knudson CM, Korsmeyer SJ.Bcl-2 and Bax function independently to regulate cell death. Nat Genet. 1997;16:358-363.
109. Cheng EH, Levine B, Boise LH, Thompson CB, Hardwick JM. Bax-independent inhibition of apoptosis by Bcl-XL. Nature. 1996;379:554-556.
110. Nagata S. Fas and Fas ligand: a death factor and its receptor. Adv Immunol. 1994;57:129-136.
111. Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993;75:1169-1172.
112. Smith C A, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell. 1994;76:959-962.
113. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S. Lethal effect of the anti-Fas antibody in mice. Nature. 1993;364:806-811.
114. Trauth BC, Klas C, Peters AM, Matzuku S, Moller P, Falk W, Debatin KM, Krammer P H. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science. 1989;245:301-306.
115. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17:1675-1687.
116. Fernandes-Alnemri T, Armstrong RC, Krebs J, Srinivasula SM, Wang L, Bullrich F, Fritz LC, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES. In vitro :activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci USA. 1996;93:7464-7469.
117. Yeh W., Pompa JL, McCurrach ME, Shu HB, Elia AJ, Shahinian A, Ng M, Wakeham A, Khoo W, Mitchell K, El-Deiry WS, Lowe SW, Goeddel DV, Mak TW. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science. 1998;279:1954-1958.
118. Fulda S, Friesen C, Los M, Scaffidi C, Mier W, Benedict M, Nunez G, Krammer PH, Peter ME, Debatin KM. Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Res. 1997;57:4956-6964.
119. Friesen C, Herr I, Krammer PH, Debatin KM. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cell. Nature. 1996;2:574-577.
120. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Litwack G, Alnemri ES. Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci USA. 1996;93:14486-14491.
121. Gamen S, Anel A, Lasierra P, Alava MA, Martinez-Lorenzo MJ, Pineiro A, Naval J. Doxorubicin-induced apoptosis in human T-cell leukemia is mediated by caspase-3 activation in a Fas-independent way. FEBS letter. 1997;417:360-364.
122. Ghosh S, May MJ, Kopp EB. NF-κB and Rel ptotrin: Evolutonary conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225-260.
123. Cross TG, cheel-Toellner DS, Henriquez NV, Deacon E, Salmon M, Lord JM. Serine/threonine protein kinases and apoptosis. Exp Cell Res. 2000;256:34-41.
124. Noguchi K, Yamana H, Kitanaka C, Mochizuki T, Kokubu A, Kuchino Y. Differential role of the JNK and p38 MAPK pathway in c-Myc- and s-Myc-mediated apoptosis. Biochem Biophys Res Commun. 2000;267:221-227.
125. Ichijo H, Nishida E, Irie K, Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997;275:90-94.
126. Zhang Y, Huang Y, Rishi AK, Sheikh MS, Shroot B, Reichert U, Dawson M, Poirer G, Fontana JA. Activation of the p38 and JNK/SAPK mitogen-activated protein kinase pathways during apoptosis is mediated by a novel retinoid. Exp Cell Res. 1999;247:233-240.
127. Zhengui X, Martin D, Joel R, Roger JD, Micheal EG. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995;270:1326-1331.
128. Kazuki I, Shigeo N, Toshihiro A, Kazuyasu N. Apoptosis induced by arsenic trioxide in leukemia U937 cells is dependent on activation of p38, inactivation of ERK and the Ca2+-dependent production of superoxide. Int J Cancer. 2001;92:518-526.
129. Chi-Dug K, Seo-Dong Y, Byung-Wook H, Kwang-Woon K, Dong-Wan K, Cheol-Min K, Sun-Hee K, Byung-Seon C. The inhibition of ERK/MAPK not the activation of Jnk/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemic K562 cells. Leuk Res. 2000;24:527-534.
130. Bours V, Bentires M, Hellin A, Viatour P, Robe P, Dehalle S, Benoiy V, Merville M. Nuclear Factor-κB, Cancer, and apoptosis. Biochem Pharm. 2000;60:1085-1090.
131. Bours V, Bonizzi G, Bentires M, Bureau F, Piette J, Lekeux P, Merville M. NF-κB activation in response to toxical and therapeutical agents: role in inflammation and cancer treatment. Toxicology. 2000;153:27-38.
132. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
133. Thornberry NA, Molineaux SM.Interleukin-1β converting enzyme: A novel cysteine protease required for IL-1β production and implicated in programmed cell death. Protein Sci. 1995;4:3-12.
134. Takahashi H, Kinouchi M, Iizuka H. Interleukin 1 beta converting enzyme and CPP32 are involved in ultraviolet B-induced apoptosis of SV40-transformed human keratinocytes. Biochem Biophys Res Commun. 1997;236:194-198.
135. Thome K, Hofmann K, Burns F, Martinon JL, Bodmer C, Mattmann J. Identification of CARDIAK, a RIP-like kinase that associates with caspase-1. Curr Biol. 1998;8:885-888.
136. Zhu W, Friedman H,Klein TW.Delta 9 tetrahydrocannabinol induces apoptosis in macrophages and lymphocytes: involvement of Bcl-2 and caspase-1. J Pharmacol Exp Ther. 1998;286:1103-1109.
137. Chin YE, Kitagawa M, Kuida K, Flavell RA, Fu XY. Activation of the STAT signaling pathway can cause expression of caspase 1 and apoptosis. Mol Cell Biol. 1997;17:5328-5337.
138. Chittenden T, Harrington EA, O’Connor R, Flemington C, Lutz RJ, Evan GI, Guild BC. Induction of apoptosis by the Bcl-2 homologue Bak. Nature. 1995;374:733-736.
139. Wang GQ, Gastman BR, Wieckowski E, Goldstein LA, Gambotto A, Kim TH, Fang B, Rabinovitz A, Yin XM, Rabinowich H. A role for mitochondrial Bak in apoptotic response to anticancer drugs. J Biol Chem. 2001;276:34307-34317.
140. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA. 1998;95:4997-5002.
141. Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter C, Sadoul R, Mazzei G, Nichols A, Martinou JC. Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol. 1998;143:217-24.
142. Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol. 2000;20 :929-935.
143. Wood DE, Newcomb E W. Cleavage of Bax enhances its cell death function. Exp Cell Res. 2000;256:375-382.
144. Strobel T, Swanson L, Korsmeyer S, Cannistra SA. Bax enhances paclitaxel-induced apoptosis through a p53-independent pathway. Proc Natl Acad Sci USA. 1996;93:14094-14099.
145. Lowe SW, Bodis S, Mlatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T. p53 atatus and the efficacy of cancer therapy in vivo. Science. 1994;266:807-810.
146. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80:293-299.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔