(54.236.62.49) 您好!臺灣時間:2021/03/06 11:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳梅恩
研究生(外文):CHEN Mei-En
論文名稱:蒟蒻及其水解產物對乳酸菌醱酵產物之影響
論文名稱(外文):Effect of konjac and its hydrolysates on the fermentation products of bifidobacteria
指導教授:陳曉鈴陳曉鈴引用關係
指導教授(外文):Chen Hsiao-Ling
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養科學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:90
中文關鍵詞:蒟蒻及其水解產物乳酸菌短鏈脂肪酸乳酸抗氧化
外文關鍵詞:konjac and its hydrolysatesbifidobacteriashort chain fatty acidlactateantioxidative
相關次數:
  • 被引用被引用:6
  • 點閱點閱:252
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類腸道內所分佈之菌相,至今已被分離鑑定出約有400種以上之菌種存在,其中Bifidobacterium及Lactobacillus對健康之正面影響遠超過負面影響。
蒟蒻精粉(Konjac powder)富含葡萄糖及甘露糖β鍵結而成之水溶性纖維,所以不為人體消化吸收,本實驗即以體外試驗觀察腸內菌對蒟蒻及其不同分子量水解產物之利用性。利用酸解法將蒟蒻精粉(K)製備成三個不同分子量之水解產物,所得之平均聚合度(Degree of polymerization, DP)各為26(KH1)、12(KH2)及5(KH3)。將蒟蒻和這三個水解產物(0.05﹪, w/v)添加至培養基中,觀察這些碳源對B. adolescentis、B. bifidum、B. breve、B. longum、L. acidophilus、Bacteroides fragilis等六株腸內菌之生長情形,並比較此六株腸內菌於各碳源中其醱酵產物之影響。
結果發現,在添加0.05﹪之各碳源於培養基中,六株腸內菌之生長曲線皆會隨著培養時間之增長而上升,並能利用這些碳源醱酵產生短鏈脂肪酸及乳酸,使培養液之pH值下降。就短鏈脂肪而言,比較添加K、KH1、KH2及KH3之培養基,發現對Konjac有良好之醱酵者為B. adolescentis和L. acidophilus二株菌;對KH1者為B. bifidum及B. breve;KH3則是Bacteroides fraigilis。在乳酸方面,以B. breve和B. longum二株菌對於添加KH2之培養液所產生之乳酸量最多,其他菌株於各碳源下則無顯著性差異。
分析其醱酵產物之抗氧化性中,結果顯示六株腸內菌皆以添加KH1培養基中具較佳之螯合鐵能力;以添加KH3中具較佳之共軛雙烯清除率;而清除DPPH自由基方面,於添加KH3之培養基中有較佳之DPPH自由基清除率者為B. adolescentis、 B. bifidum、L. acidophilus三株菌, KH2中為B. breve, KH1為B. longum, Konjac中則為Bacteroides fraigilis;在其氧化產物方面,B. bifidum及L. acidophilus於Konjac中有較高濃度之氧化產物,Bacteroides fragilis於KH1中,B. adolescentis、B. longum二株菌則於KH2中所測得之濃度較高,其中B. breve雖然於各碳源間無顯著差異性,但其脂質過氧化產物之濃度為六株菌之冠。由以上結果得知,蒟蒻及其水解產物對腸內細菌具良好之利用性,且依菌株之不同,對利用各碳源之情形亦不同。
The aims of this study were to investigate the prebiotic role of konjac glucomannan and its hydrolysates, and the antioxidative effects of the fermentation products from six species of the intestinal microorganism including Bifidobacterium adolescentis, B. bifidum, B. breve, B. longum, Lactobacillus acidophilus and Bacteroides fragilis. The acid hydrolysates of konjac were fractionated into three portions according to their degree of polymerization (DP) into KH1 (mean DP=26), KH2 (mean DP=12) and KH3 (mean DP=5). Culture media containing 0.05% konjac, its hydrolysates, simple sugars and fructo-oligosaccharide were inoculated with respective microorganism. The optical absorbance and culture pH were monitored after 6, 12, 24 and 48 h of incubation. The lactate and short chain fatty acid content, antioxidative ability and peroxidative products were determined after 48 h of incubation.
The results indicated the optical absorbance and the decrease in culture pH were increased with the duration of incubation. Konjac itself was better substrates for fermentation for Bifidobacterium adoelscentis and L. acidophilus, but not for other Bifidobacterium spp. and Bacteroides fragilis. However, when compared with konjac hydrolysates, KH1 and KH3 were better utilized by B. bifidum and B. breve, respectively, than the other bacteria. The media containing KH3, as compared with konjac and other konjac hydrolysates, produced the greatest amount of short chain fatty acids by Bacteroides fragilis. In terms of lactate production, KH2 was the best substrate for B. breve and B. longum. The lactate production did not vary with carbohydrate substrates in other species.
In terms of antioxidative capacity, KH1-containing media compared with other carbohydrate sources exerted the greatest ability in all species. On the other hand, KH3-containing media compared with other carbohydrate sources exerted the greatest diene clearing ability in all species. KH3-containing media resulted in best DPPH clearing ability in B. adolescentis, B. bifidum, and Lactobacillus acidophilus. KH2, KH1, and konjac caused the greatest DPPH clearing ability in B. breve, B. longum and Bacteroides fragilis, respectively. Furthermore, konjac caused greater oxidative products in B. bifidum and L. acidophilus. KH1 caused the greater peroxidative product contents in Bacteroides fragilis. B. adolescentis and B. longum produced greatest peroxidative products in KH2-containing media. In particular, B. breve produced the greatest amount of peroxidative products as compared to other species, and the production was not affected by carbohydrate sources.
In summary, the konjac and its hydrolysate could specifically stimulate the growth of lactic acid bacteria or the production of organic acids. However, the preference of carbohydrate varied with species. Similarly, the antioxidative effects of fermentation products varied with carbohydrate sources, and the microbial species. The healthy aspects of prebiotic/ probiotic system deserve further investigation.
目錄
中文摘要 I
英文摘要 III
第一章 前言 1
第二章 文獻探討 3
第一節 蒟蒻 3
一、蒟蒻之簡介及其特性 3
二、蒟蒻之生理機能 5
第二節 乳酸菌 8
一、乳酸菌定義 8
二、乳酸菌之分類及其代謝途徑 9
三、乳酸菌與人體之關係 10
四、腸道內乳酸菌群之生理機能 12
第三節 膳食纖維分子量對益生菌之影嚮 19
第三章 材枓與方法 23
第一節 實驗材料 23
第二節 實驗方法 30
一、低分子量蒟蒻水解產物之製備 30
(1)蒟蒻水解產物之製備 30
(2)Degree of Polymerization測定 二、腸內菌生長試驗 32
(1)菌株之活化 32
(2)增殖培養 33
(3)菌株保存 33
(4)腸內菌對蒟蒻及其水解產物利用性試驗 33
三、代謝產物之測定 35
(1)pH值之測定 35
(2)乳酸含量之測定 35
(3)短鏈脂肪酸之測定 35
(4)抗氧化之測定 37
第四章 結果與討論 39
一、蒟蒻水解產物之製備 39
二、腸道細菌於不同碳源下生長之情形 40
三、腸道細菌醱酵產物pH值之測定 43
四、乳酸及短鏈脂肪酸之產生 45
五、腸內細菌醱酵產物之抗氧化性 48
第五章 結論 52
第六章 參考文獻 79
表目錄
表一、MRS Broth之組成分 27
表二、Reinforced Clostridial Medium之組成分 28
表三、蒟蒻水解產物DP值之測定 53
表四、B. adolescentis在不同碳源下,培養6、12、24及48小時後其生
長變化情形 54
表五、B. bifidum在不同碳源下,培養6、12、24及48小時後其生長變
化情形 55
表六、B. breve在不同碳源下,培養6、12、24及48小時後其生長變化
情形 56
表七、B. longum在不同碳源下,培養6、12、24及48小時後其生長變
化情形 57
表八、L. acidophilus在不同碳源下,培養6、12、24及48小時後其生
長變化情形 58
表九、Bacteroides fragilis在不同碳源下,培養6、12、24及48小時後
其生長變化情形 59
表十、B. adolescentis培養於不同碳源下,培養液在6、12、24及48
小時後pH值之變化情形 60
表十一、B. bifidum培養於不同碳源下,培養液在6、12、24及48小時
後pH值之變化情形 61
表十二、B. breve培養於不同碳源下,培養液在6、12、24及48小時後
pH值之變化情形 62
表十三、B. longum培養於不同碳源下,培養液在6、12、24及48小時
後pH值之變化情形 63
表十四、L. acidophilus培養於不同碳源下,培養液在6、12、24及48
小時後pH值之變化情形
表十五、Bacteroides fragilis培養於不同碳源下,培養液在6、12、24及48小時後pH值之變化情形 65
表十六、六株腸內菌醱酵產生之各短鏈脂肪酸之比 66
圖目錄
圖一、Glucomannan之化學結構式 4
圖二、雙叉桿菌與同質、異質型乳酸醱酵菌之醣類代謝產物與途徑比較11
圖三、成人消化道內菌量之變化 13
圖四、新生兒出生七日內腸內菌群之變化 14
圖五、不同年齡層腸內菌相之變化 15
圖六、蒟蒻水解之流程圖 30
圖七、在添加Konjac、Glucose、Mannose及OF(0.05%, w/v)培養基
中,六株腸內菌醱酵所產生之乙酸量 67
圖八、在添加Konjac、KH1、KH2及KH3(0.05%, w/v)培養基中,
六株腸內菌醱酵所產生之乙酸量 68
圖九、在添加Konjac、Glucose、Mannose及OF(0.05%, w/v)培養基
中,六株腸內菌醱酵所產生之乳酸量 69
圖十、在添加Konjac、KH1、KH2及KH3(0.05%, w/v)培養基中,
六株腸內菌醱酵所產生之乳酸量 70
圖十一、培養48小時後,六株腸內菌於添加0.05 %(w/v)Konjac、
Glucose、Mannose及OF培養液中,醱酵產物之螫合鐵能力 71
圖十二、培養48小時後,六株腸內菌於添加0.05 %(w/v)Konjac、
KH1、KH2及KH3培養液中,醱酵產物之螫合鐵能力 72
圖十三、培養48小時後,六株腸內菌於添加0.05 %(w/v)Konjac、
Glucose、Mannose及OF培養液中,醱酵產物之清除共軛雙烯能力 73
圖十四、培養48小時後,六株腸內菌於添加0.05 %(w/v)Konjac、
KH1、KH2及KH3培養液中,醱酵產物之清除共軛雙烯能力 74
圖十五、培養48小時後,六株腸內菌於添加0.05 %(w/v)Konjac、
Glucose、Mannose及OF培養液中,醱酵產物之清除DPPH
自由基能力 75
圖十六、培養48小時後,六株腸內菌於添加0.05 %(w/v)Konjac、
KH1、KH2及KH3培養液中,醱酵產物之清除DPPH自由基
能力 76
圖十七、培養48小時後,六株腸內菌於添加0.05 %(w/v)Konjac、
Glucose、Mannose及OF培養液中,醱酵產物之脂質過氧化
產物值 77
圖十八、培養48小時後,六株腸內菌於添加0.05 %(w/v)Konjac、
KH1、KH2及KH3培養液中,醱酵產物之脂質過氧化產物值
78
1. Fujiwara S., Hirota T., Nakazato H., Muzutani T. and Mitsuoka T.(1991)Effect of konjac mannan on intestinal microbial metabolism in mice bearing human flora and in conventional F344 rats. Fd Chem. Toxic. 29(9): 601-606.
2. 光岡知足(1990)腸內フローラと健康,New Food Industry,32(10):1。
3. Gibson, G. R., Beatty, E. R., Wang, X. and Cummings, J. H.(1995)Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108: 975-982.
4. Anders Arvill and Lennart Bodin(1995)Effect of short-term ingestion of konjac glucomannan on serum cholesterol in healthy men. Am. J. Nutr. 61: 585-589.
5. Maeda M, Shimahara H, Sugiyama N. 1980. Detail examination of the branched structure of konjac glucomannan. Agric. Biol. Chem. 44: 245-252.
6. Nishinari K, Williams PA, Phillips GO. (1992) Review of the physico-chemical characteristics and properties of konjac mannan. Food Hydrocoll. 6: 199-222.
7. Doi K (1995) effect of konjac fibre(glucomannan)on glucose and lipids. Eur. J. of Clin. Nutr. 49 : Suppl.3, S190-S197.
8. 賴鳴鳳、廖樹杰、呂政義(1999)水溶性蒟蒻膠萃取與分子性質之探 討。食品科學,26 : 456-467。
9. Jacon SA, Rao MA, Cooley HJ, Walter RH.(1993)The isolation and characterization of a water extract of konjac flour gum. Carbohydr. Polym. 20: 35-41.
10. Thomas WR. 1997. Konjac gum. In Thickening and Gelling Agents for Food, 2nd ed. Ed. A. Imeson. Blackie Academic & Professional, London. pp. 169-179.
11. 黃加成、蘇和平、林文慶(1998)蒟蒻在低脂肪中式香腸之利用。食品科學,25:437-445。
12. 楊季清、張政偉、羅麗珠(1997)蒟蒻素食火腿製作之最適化。食品科學,24:230-241。
13. Osburn WN., Keeton JT.(1994). Konjac flour gel as fat substitute in low-fat prerigor fresh pork sausage. J. Food Sci. 59: 484-489.
14. Doi K, Matsuura M, Kawara A, Uenoyama R & Baba S(1981) Effect of glucomannan (konjac fiber) on glucose and lipid metabolism in normal and diabetes aubjects. In Genetic environmental interaction in diabetes mellitus. Proceedings of the Third Symposium on diabetes Mellitus in Asia and Oceana, eds JS Melsh, I Hanna and S Baba, pp 306-312. Amsterdam: Excerpta Medica.
15. Finegold SM, Sutter VL, Mathisen GE. 1983. Normal indigenous intestinal flora. In: Human intestinal microflora in health and disease. Hentges, D. J. ed. pp. 3-31. Academic Press, London, U.K.
16. Hidaka, H., Eida, T., Takizawa, T., Tokunaga, T. and Tashiro, Y(1986) Effects of fructooligosaccharides on intestinal flora and
human health. Bifidobacteria Microflora. 5(1): 37-50.
17. Masai, T., Wada, K., Hayakawa, K., Yoshihara, I. and Mitsuoka, T. (1987)Effect of soybean oligosaccharides on human intestinal flora and metabolic activities. Japan. J. Bacteriol. 42(1): 313-315.
18. 光岡知足(1996)清理腸內細菌的驚奇。青春出版社,台北市。
19. Mizutani T, Mitsuoka T. 1982. Effect of konjac mannan on spontaneous liver tumorigenesis and fecal flora in C3H/He male mice. Cancer Letters 17: 27-32.
20. Tamura, Z(1983)Nutriology of bifidobacteria. Bifidobacteria Microflora 2(1): 3-16.
21. Mitsuoka, T.(1990 c)Bifidobacteria and their role in human health. J.
Ind. Microbiol. 6: 263-267.
22. Mizutani T. and Mitsuoka T.(1983)Effect of konjac mannan on 1,2-dimethylhydrazine induced intestinal carcinogenesis in Fisher 344 rats. Cancer letters 19: 1-6.
23. Zhang Y., Maoyu Y. (1989) Electrode system for determination of microbial cell populations in polluted water. Appl Environ Microbiol. 55(8): 2082-5.
24. Walsh D. E., Yaghoubian V, Behforooz A.(1984) Effect of glucomannan on obese patients: a clinical study. Int. J. Obes. 8: 289-293.
25. Matsuura M.(1986)Effect of dietary fiber(glucomannan)on serum cholesterol. Japan. Soc. Clin. Nutr. 8: 1-11.
26. Wu J. and Peng SS.(1997)Comparison of hypolipidemic effect of refined konjac meal with several common dietary fibers and their mechanisms of action. Biomed. Environ Sci. 10: 27-37.
27. Boila, R. J., Salomons, M. D., Milligan, L. P. and Aherne, F. X.(1981)The effect of dietary propionic acid on cholesterol synthesis in
swine. Nutr. Rep. Int. 23: 1113-1121.
28. Vuksan V., Sievenpiper J. L., Owen R.(2000)Beneficial effects of viscous dietary fiber from Konjac-mannan in subjects with the insulin resistance syndrome: results of a controlled metabolic trial. Diabetes Care 23: 9-14.
29. Melga p., Giusto M., Ciuchi E.(1992)Dietary fiber in the dietetic therapy of diabetes melliyus. Experimental data with purified glucomannans. Riv. Eur. Sci. Med. Farmacol. 14: 367-373.
30. Johnson, T. R. and C. L. Case.(1995)Laboratory experiments in microbiology. 4nd edition. The Benjamin / Cummings Publoshing Co. Inc.
31. 廖啟成(1994)細說乳酸菌。健康世界,8: 52-61。
32. Stackebrandt E, Kroppenstedt RM, Fowler VJ.(1983)A phylogenetic analysis of the family Dermatophilaceae. J. Gen. Microbiol. 129 (6): 1831-8.
33. Poupard J. A., Husain I. and Norris R. F.(1973)Biology of the Bifidobacteria. Bacter. Rev. 37: 136-165.
34. Roberfroid, M., Gibson, G. R. and Delzenne, N.(1993)The biochemistry of oligofructose, a nondigestible fiber ; an approach to calculate its caloric value. Nutr. Rev. 51: 137-146.
35. Modler, H. W., McKellar, R. C. and Yaguchi, M.(1990)Bifidobacteria and Bifidogenic Factors. J. Inst. Can. Sci. Technol. Aliment. 23: 29-41.
36. Yuhara, T., Isojima, S., Tsuchiya, F. and Mitsuoka, T. (1983) On the intestinal flora of bottle-fed infants. Bifidobacteria Microflora 2:33-39.
37. Benno, Y., Sawada, K. and Mitsuoka, T (1984) The intestinal microflora of infants : composition of fecal flora in breast-fed and bottle-fed infants. Microbiol. Immunol. 28: 975-986.
38. Yoshika, H., Fujita, K.,Sakata, H., Murono, K. and Kusakabe, I. (1994) Substrate specificity of Streptomyces ß-xylanase toward glucoxylan. Biosci. Biotech. Biochem. 58(6): 1041-1044.
39. Fuller, R.(1992)Probiotics, The scientific basis. Chapman & Hall. London. NY. Tokyo. Melbourne. Madrds.
40. Gilliland, S. E. and M. L. Speck.(1997)Antagonistic action of Lactobacillus acidophilus toward intestinal and food-borne pathogens in associative cultures. J. Food Port. 40: 821-823.
41. Hose, H. and T. Sozzi (1991) J. Chem. Technol. And Biotech. 51: 540-544.
42. Rasic, J. L.(1983)The role of dietary foods containing bifido and acidophilus bacteria in nutrition and health. N. Eur Dairy J. 4: 80-88.
43. Gibson, G. R. and Wang, X.(1994a)Bifidogenic properties of different types of fructooligosaccharides. Food Microbiol. 11: 491-498.
44. Gibson, G. R. and Wang, X.(1994b)Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culyure. FEMS Microbiol. Lett. 118: 121-128.
45. Dahiya, R. S. and L. Speck.(1968)Hydrogen peroxide formation by lactobacilli and its effect on Staphylococcus aureus. J. Dairy Sci. 51: 1568-1572.
46. Barefoot, S. F. and C. G. Nettles(1993)Antibiosis revisited: bacteriocins produced by dairy starter sultures. J. Dairy Sci. 76: 2366-2379.
47. Gutteridge JM, Halliwell B.(1989)Iron toxicity and oxygen radicals. Baillieres. Clin. Haematol. 2(2): 195-256.
48. Kaizu. H., Sasaki M., Nakajima H., and Suzuki Y.(1993)Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 76: 2493-2499.
49. Lin M.Y. and Chyuan-Liang Yen (1999)Antioxidative ability of lactic acid bacteria. J. Agric Food Chem. 47: 1460-1466.
50. Lin M.Y. and Fen-Juan Chang (2000)Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digestive Diseases and Sciences. 8: 1617-1622.
51. Sanders ME, Walker DC, Walker KM, Aoyama K, Klaenhammer TR. (1996) Performance of commercial cultures in fluid milk applications. J. Dairy Sci. 79(6): 943-55.
52. Teraguchi, S., Ono, J., Kiyosawa, I., Fukuwatari, Y., Araki, K. & Okonogi, S.(1984)Vitamin production of bifidobacteria originating from human intestine. J. Pan. Soc. Nutr. And Food Sci. 37(2): 157-164.
53. Deguchi, Y., Morishita, T. & Mutai, M.(1985)Comparative studies on synthesis of water-solube vitamins among human species of bifidobacteria. Agric. Biol. Chem. 49(1): 13-19.
54. O’sullivan, M. G., G. Thornton, G. C. Osullivan and J. K. Collins.(1992)Probiotic bacteria: myth or reality. Trends in Food and Technology. Dec. 3(12): 309-314.
55. Danielson, A. D., E. R. Peo, M. K. Shahani, A. J. Lewis, P. J. Whalen, and M. A. Amer.(1989)Anticholesterolemic property of Lactobacillus acidophilus yoghurt fed to mayure boars. J. Anim. Sci. 67: 966-974.
56. Gilliland, S. E., C. R. Nelson and C. Maxwell.(1985)Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 49: 377-381.
57. Klaver, F. A. M. and R. V. Meer.(1993)The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt deconjugating activity. Appl. Environ. Microbiol. 59: 1120-1124.
58. 楊媛絢(1996)雙歧桿菌環境耐性株之相關研究及專利,食品工業,9: 39-45。
59. Daly, C.(1991)J. Chem.Technol. Biotechnol. 51: 544-548.
60. Schiffrin, E. J., D. Brassart, A. L. Servin, F. Rochat and A. D. Hughes.(1997)Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am. J. Clin. Nutr. 66: 515-520.
61. Campbell, J. M., Fahey, G. C. and Bryan, W. W.(1997)Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J. Nutr. 127: 130-136.
62. Howard, M. D., Gordon, D. T., Garleb, K. A. and Kerley, M. S.(1995)Dietary fructooligosaccharide, xylooligosaccharide and gum
epithelial cell proliferation in mice and rates. J. Nutr. 125:2604-2609.
63. Yazawa K, Imai K, Tamura Z.(1978)Oligosaccharides and polysaccharides specifically utilizable by bifidobacteria. Chem Pharm Bull (Tokyo) 26 (11): 3306-3311.
64. Yazawa, K. and Tamura, Z. (1982) Search for sugar sources for selective increase of bifidobacteria. Bifidobacteria Microflora. 1: 39-44.
65. Oku, T., Tokunaga, T. and Hosoya, N.(1984)Nondigestibility of a new sweetener, “ Neosugar ”, in the rat. Am. J. Nutr. 114: 1574-1581.
66. Rumessen JJ, Bode S, Hamberg O, Gudmand-Hoyer E.(1990)Fructans of Jerusalem artichokes: intestinal transport, absorption, fermentation, and influence on blood glucose, insulin, and C-peptide responses in healthy subjects.
67. Cummings, J.H. and Roberfroid, M. B.(1997)A new look at dietary carbohydrate: Chemistry, physiology and health. Eur. J. Clin. Nutr. 51: 417-423.
68. Wang, X. and Gibson, G.R.(1993)Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J. Appl. Bact. 75: 373-380.
69. Loo V., J., Coussement, P., De Leenheer, L., Hoebregs, H. & Smits, G.(1995)On the presence of inulin and oligofructose as natural ingredients in the Western diet. Crit. Rev. Food Sci. Nutr. 35: 525-552.
70. Wang, X.(1993)Comparative Aspects Of Carbohydrate Fermentation By Colonic Bacteria. Doctoral thesis, University of Cambridge, Cambridge, U.K.
71. Ide T, Moriuchi H, Nibimoto K.(1991). Hypolipidemic effect of guar gum and its enzyme hydrolysate in rats fed highly saturated fat diets. Ann. Nutr. Metab. 35: 34-44.
72. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F.(1956)Colorimetric method for determination of sugars and related
substance. Analysis Chemistry 28: 350-356.
73. Nelson N.(1944)Photometric adaptation of the somogyi method for the determination of glucose.
74. Shimada K., Fujikawa K., Yahara K., and Nakamura T.(1992). Antioxidative properties of xanthane on the antioxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948.
75. Dinis, T. C. P., Maderia, V. M. C. and Almeida, L. M.(1994)Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315: 161-169.
76. Lingnert, H., Vallentin, K. and Ericksson, C. E.(1979)Measurement of antioxidantive effect in model system. J. Food Process. Preserv. 3: 87-103.
77. Draper, H. H. and Hadley, M. (1990)Malondialdehyde determination as Index of lipid peroxidation. Meth. Enzymol. 186:421-431.
78. Kato, K., and K. Matsuda(1969)Studies on the chemical structure of konjac mannan. Part Ι. Isolation and characterization of oligosaccharides from the partial acid hydrolyzate of the mannann. Arg. Bio. Chem. 33: 1446.
79. Kato, K., T. Watanabe and K. Matsuda(1970)Studies on the chemical structure of konjac mannan. Part II. Isolation and characterization of oligosaccharides from the enzymatic hydrolyzate the mannann. Arg. Bio. Chem. 34: 532.
80. Roberfroid, M.B.& Delzenne, N.M.(1998)Dietary fructants. Ann. Rev. Nutr. 18: 117-143.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔