|
1.[AOL93] R. B. Allen, P. Obry, and M. Littman, “An Interface for Navigating Clustered Document Sets Returned by Queries,” Proceedings of the ACM Conference on Organizational Computing Systems, 1993, pp.166-171.2.[AS94] Agrawal, R. and Srikant, R. “Fast Algorithms for Mining Association Rules,” Proceedings of the 20th Int''''l Conference on Very Large Databases, Santiago, Chile, Sep, 1994.3.[BA99] R. J. Bayardo Jr. and R. Agrawal, “Mining the Most Interesting Rules,” Proceedings of the 5th ACM SIGKDD Int''''l Conference on Knowledge Discovery and Data Mining, 1999, pp.145-154.4.[Che01] H. Chen, “Knowledge Management Systems─A Text Mining Perspective,” Ph.D. thesis, 2001.5.[CHY96] M. S. Chen, J. Han, and P. S. Yu, “Data Mining: An Overview from Database Perspective,” IEEE Transactions on Knowledge and Data Eng., 8(6), Dec. 1996, pp.866-883.6.[CKPT92] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey, “Scatter/Gather: A Cluster-Based Approach to Browsing Large Document Collections,” 15th International ACM SIGIR Conference on Research and Development in Information Retrieval, 1992, pp.318-329.7.[Cro78] W. B. Croft, “Organizing and Searching Large Files of Documents,” Ph.D. Thesis, University of Cambridge, Oct. 1978.8.[DDFLH90] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “Indexing by Latent Semantic Analysis,” Journal of the American Society for Information Science, 41(6), 1990, pp.391-407.9.[DFG01] I. Dhillon, J. Fan, and Y. Guan, “Efficient Clustering of Very Large Document Collections,” Data Mining for Scientific and Engineering Applications, Kluwer Academic Publishers, 2001, Ch.1.10.[DGS99] J. Dörre, P. Gerstl and R. Seiffert, “Text Mining: Finding Nuggets in Mountains of Textual Data,” Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1999, pp.398-401.11.[DJ88] R. C. Dubes and A.K. Jain, Algorithms for Clustering Data, Prentice Hall, 1988.12.[DM01] I.S. Dhillon and D. S. Modha, “Concept Decompositions for Large Sparse Text Data Using Clustering,” Machine Learning, 42(1), Jan. 2001, pp.143-175.13.[Fab94] V. Faber, “Clustering and the Continuous k-Means Algorithm”, Los Alamos Science, November 22, 1994.14.[FBY92] W. B. Frakes and R. Baeza-Tates, Information Retrieval: Data Structures and Algorithms, Prentice Hall Englewood Cliffs, New Jersey, 1992, Ch.7.15.[FPS96a] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, “The KDD Process for Extracting Useful Knowledge from Volumes of Data,” Communications of the ACM, 39(11), 1996, pp.27-34.16.[FPS96b] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, ”From Data Mining to Knowledge Discovery: An Overview,” Advances in Knowledge Discovery and Data Mining, 1996, pp.1-36.17.[FU96] U. Fayyad, and R. Uthurusamy, “Data mining and knowledge discovery in databases,” Communications of the ACM, 39(11), 1996, pp.24-2618.[FKYKR97] R. Feldman, W. Klosgen, B. Y. Yaniv, G. Kedar, and V. Reznikov., “Pattern Based Browsing in Document Collections,” Proceedings of First European Symposium on Principles of Data Mining and Knowledge Discovery, June 1997, pp.112-122.19.[FH96] R. Feldman, and H. Hirsh, “Mining Association in Text in the Presence of Background Knowledge,” Proceedings of 2nd international Conference on Knowledge Discovery and Data Mining, 1996, pp.343-346.20.[FH97] R. Feldman, and H. Hirsh, “Exploiting Background Information in Knowledge Discovery from Text,” Journal of Information System, Vol.9, 1997, pp.83-97.21.[FKZ97] R. Feldman, W. Klosgen and A. Zilberstein, “Visualization Techniques to explore Data Mining Result s for Document Collections,” Proceedings of the Third International Conference on Knowledge Discovery & Data Mining, 1997, pp.16-23.22.[GLW86] A. Griffith, H. C. Luckhurst, P. Willet, “Using Inter-Document Similarity Information in Document Retrieval Systems,” Journal of the American Society for Information Science, Vol.37, pp.3-11, 1986.23.[GS98] M. Goldszmidt, and M. Sahami, “A Probabilistic Approach to Full-Text Document Clustering,” Technical Report ITAD-433-MS-98-044, SRI International, 1998.24.[HCB00] M. H. Haddad, J. P. Chevallet, and M. F. Bruandet, “Relations between Terms Discovered by Association Rules,” 4th European conference on Principles and Practices of Knowledge Discovery in Databases (PKDD''''2000) Workshop on Machine Learning and Textual Information Access, Lyon France, Sep.12, 2000.25.[Hil68] D. R. Hill, A Vector Clustering Technique, Mechanized Information Storage, Retrieval and Dissemination, North-Holland, Amsterdam, 1968.26.[HK00] J. Han, and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, 2000.27.[HPY00] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate Geneation,” Proceedings of the 2000 ACM-SIGMOD International. Conference Management of Data (SIGMOD’00), Dallas, TX, May 2000, pp1-12.28.[KL00] H. J. Kim and S. G. Lee, ”A Semi-Supervised Document Clustering Technique for Information Organization,” Proceedings of the ninth International Conference on Information knowledge management (CIKM), 2000.29.[KM00] G. J. Kowalski, and M. T. Maybury, Information Storage and Retrieval Systems, 2nd Edition, Kluwer Academic Publishers, 200030.[KMO99] W. A. Kosters, E. Marchiori, A. A. J. Oerlemans, “Mining Clusters with Association Rules,” Proceedings of III Int''''l Symposium on Intellegent Data Analysis, Aug. 1999, pp.39-50.31.[LA99] B. Larsen and C. Aone, “Fast and effective text mining using linear-time document clustering,” Proceedings of the Fifth ACM SIGKDD Int''''l Conference on Knowledge Discovery and Data Mining, 1999 ,pp.16-22.32.[LC96] A. V. Leouski, and W. B. Croft, “An Evaluation of Techniques for Clustering Search Results,” Technical Report IR-76, Department of Computer Science, University of Massachusetts, Amherst,1996.33.[Lew92] D. D. Lewis, ”Representation and Learning in Information Retrieval,” Ph.D. thesis, 1992.34.[Lew96] D. D. Lewis, “The Reuters-21578 Text Categorization Test Collection,” http://www.research.att.com/~lewis/reuters21578.html, 1996.35.[MHB97] J. Moore, E. H. Han, D. Boley, M. Gini, R. Gros, K. Hasting, G. Karypis, V. Kumar, and B. Mobasher, “Web Page Categorization and Feature Selection Using Association Rule and Principal Component Clustering,” 7th Workshop on Information Technologies and Systems, (WITS''''97), 199736.[Por80] M. F. Porter, “An Algorithm for Suffix Stripping,” Program, 14(3), 1980, pp.130-137.37.[RG00] S. M. Rüger and S. E. Gauch, “Feature Reduction for Document Clustering and Classification,” Technical report, Computing Department, Imperial College, London, UK, 2000.38.[Sal88] G. Salton, Automatic Text Processing, Addison-Wesley Publishing Company, 1988.39.[SCHS99] L. Singh, B. Chen, R. Haight, P. Scheuermann, “An Algorithm for Constrained Association Rule Mining in Semi-structured Data,” PAKDD-99, April 1999, pp.148-158.40.[SKK00] M. Steinbach, G. Karypis, and V. Kumar, “A comparison of document clustering techniques,” KDD Workshop on Text Mining, 2000.41.[SM83] G. Salton, and M. McGill, Introduction to Modern Information Retrieval, New York: McGraw-Hill, 1983.42.[SS98] H. Schütze and C. Silverstein, “Projection for Efficient Document Clustering”, Proceedings of the 20th International ACM SIGIR Conference on Research and Development in Information Retrieval, 1998, pp.74-81.43.[Sul01] D. Sullivan, Document Warehousing and Text Mining, Wiley Computer Publishing, 2001, pp.326.44.[SSC97] L. Singh, P. Scheuermann, and B. Chen, “Generating Association Rules from Semi-Structured Documents Using an Extended Concept Hierarchy,” ACM IKM, 1997, pp.193-200.45.[Van79] C. J. Van Rijbergen, Information Retrieval, Butterworths, 1979, Ch.7.46.[Wil88] P. Willet, “Recent Trends in Hierarchical Document Clustering: A Critical Review,“ Information Processing and Management, 24(5), 1988, pp.557-597.47.[ZE98] O. Zamir and O. Etzioni, “Web Document Clustering: A Feasibility Demonstration,” Proceedings of the 19th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’98), 1998, pp.46-54.48.[ZK02] Y. Zhao and G. Karypis, “Criterion Functions for Document Clustering─Experiments and Analysis,” Technical Report #01-40, University of Minnesota, 2002
|