跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 11:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佳琪
研究生(外文):Jia-Chyi Chen
論文名稱:可拋棄式尿素感測器與前置放大器之研究
論文名稱(外文):Study of the Disposable Urea Sensor and the Pre-amplifier
指導教授:熊慎幹
指導教授(外文):Shen-Kan Hsiung
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:91
中文關鍵詞:尿素感測器延伸式離子感測場效電晶體二氧化錫尿素酶低電壓運算放大器
外文關鍵詞:ureaseextended-gate field effect transistortin oxideurea sensorlow-voltage amplifier
相關次數:
  • 被引用被引用:19
  • 點閱點閱:516
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:1
血液中之尿素濃度,可以反應蛋白質攝取及異化作用,同時與腎臟、肝臟功能及腎上腺內分泌機能有密切之關聯,所以血液或尿液中尿素氮之濃度係人體健康之重要指標,於臨床診斷用以判斷腎功能之重要參數。
本論文係利用分離架構之延伸式SnO2/ITO glass離子感測場效電晶體製作可拋棄式尿素測器,探討各個參數對整體反應之影響,如固定不同之酵素活性、改變水膠之濃度、改變量測環境之起始pH值、改變緩衝溶液之濃度…等。經由一系列之實驗,即可得知此架構之尿素感測器於5mM PBS pH 6.0之工作環境下有最佳反應曲線,可偵測尿素濃度0.31mg/dl∼80mg/dl之範圍,線性部分之感測度為169.1mV/pUrea。
另一方面,吾人利用UMC 0.5um之CMOS標準製程設計製作一1.5V低電壓運算放大器,並對此運算放大器進行其電特性之模擬與量測,另外同時將感測器一同製作於單一晶片上,並與分離式架構比較其對pH感測與尿素感測之特性影響。
In blood the urea concentration can response the unusual absorption of the protein. At the same time, it is also related to the renal function. Therefore, the urea in the blood or urine is the index of the health and the important parameter of the clinical diagnosis.
In this study, the extended-gate Field effect transistor of the SnO2/ITO glass was applied to fabricate the disposable urea sensor and to confer with the influence, including the activity of the enzyme, the concentration of the gel, the pH value, the concentration of the phosphate buffer solution…etc. After a series of the experiments, the optimize measurement environment and the best response curves can be realized. The urea sensor of the extended-gate structure can detect the urea concentration from 0.31mg/dl to 80mg/dl, and sensitivity of the linear range is about 169.1mV/pUrea.
However, the CMOS standard process of the UMC 0.5um was employed to fabricate the 1.5V low-voltage amplifier. And the characteristic of the amplifier also be measured in this study. Besides, the sensor and the pre-amplifier were also be fabricated by this technique. In this study, two kinds of the structures will be compared, including the separative structure and on a single chip.
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
圖目錄 Ⅶ
表目錄 Ⅸ
第一章 緒論 ……………………………………………………………… 1
1-1 研究背景 1
1-2 研究動機與目的 3
1-3 論文架構 5
第二章 理論分析與探討 ………………………………………………… 7
2-1 生物感測器之種類與應用 7
2-2 尿素之生理作用機制 15
2-3 尿素感測器基本原理 19
2-3.1酵素薄膜固定化技術之探討 19
2-3.2延伸式離子感測場效電晶體之工作原理 21
第三章 可拋棄式尿素感測器之實現 ……………………………………24
3-1 前言 24
3-2 尿素感測器之製備 27
3-2.1延伸式離子感測場效電晶體之製備 28
3-2.2尿素感測器之酵素薄膜固定化步驟 29
3-2.3量測架構 30
3-3 實驗結果 31
3-3.1 延伸式離子感測場效電晶體之pH感測特性 31
3-3.2 反應時間與回復時間 33
3-3.3 不同酵素量對反應之影響 34
3-3.4 不同PVA-SbQ濃度對反應之影響 36
3-3.5 不同固定方式對反應電壓之影響 38
3-3.6 量測環境pH值對反應之影響 40
3-3.7 緩衝溶液濃度對反應之影響 42
3-3.8 再現性之探討 43
3-3.9 元件壽命之探討 45
3-4 結果討論 48
第四章 低電壓運算放大器之實現 ………………………………………51
4-1 前言 51
4-2 電路架構與工作原理說明 52
4-3電路模擬與晶片量測 55
第五章 尿素感測器與前置放大器於單一晶片上實現 …………………63
5-1 前言 63
5-2 尿素感測器之製備 65
5-3結果與討論 68
5-3.1 感測器與前置放大器採分離式架構 68
5-3.2 感測器與前置放大器製作於單一晶片 71
5-3.3 結果討論 74
第六章 綜合結論與討論 …………………………………………………76
第七章 結論與未來展望 …………………………………………………80
7-1 結論 80
7-2 未來展望 83
參考文獻 84
作者簡歷 91
參考文獻[1]陳建源, "生物感測器之發展及應用", 生物產業第4卷第3期, 1993, pp.205-212.[2]黃定國, 鄭武順, 許瑞祺, "簡介生物感測器及其未來發展方向", 生物產業第7卷第4期, 1996, pp.291-298.[3]S. Zhang, G. Wright, Y. Yang, "Materials and techniques for electrochemical biosensor design and construction ", Biosensors and Bioelectronics 15, 2000, pp.273-282.[4]Clark L.C., C. Lyois, "Electrode system for continuous monitoring in cardiovascular surgery", Annals of the New York Academy of Sciences 102, 1962, pp.29-33.[5]Updike S.J., Hick G.P., "The enzyme electrode", Nature 214, 1967, pp.986-988.[6]P. Bergveld, "Development of an ion sensitive solid-state device for neurophysiological measurement", IEEE Trans. on Biomedical Engineering BME-17, 1970, pp.70-71.[7]S. Caras, J. Janata, "Field effect transistor sensitive to penicillin", Analytical Chemistry 52, 1980, pp.1935-1937.[8]C. Engels, "pH measurement today and tomorrow", Technical Report, Sentron Europe B. V., Netherlands, 1995.[9]M. Orodpour, R. Steiner, "Ion sensitive field effect transistor technology applied in new pH systems", Backman Coulter, Inc. Fullerton, 1997.[10]張振堶, "世界感測器在新興應用領域市場的成長分析", 工研院量測中心, 2000.[11]張振堶, "感測器之市場需求與技術發展趨勢", 工研院經資中心, 2002.[12]蘇麗華, "醫療器材勇奪21世紀時大產業機會NO.1", 生技時代, 第4 期, 2002, pp.56-61.[13]Sze, S.M., "Semiconductor sensor", John Wiley & Sons, New York, 1994, pp.1-15.[14]田蔚城, "生物技術", 九州圖書文物有限公司, pp.247-262.[15]江晃榮, 李必楚, "生物感測器-電子學與生物工業的結合", 科學月刊, 第17卷第5期, 1986, pp.350-355.[16]F. Scheller, F. Schubert, D. Pfeiffer, R. Hintsche, I. Dransfeld, R. Remmeberg, U. Wollenber, K. Riedel, M. Pavlova, M. Kuhn, M. Muller, P. M. Tan, W. Moritz, "Research and development of biosensors : a review", Analyst 114, 1989, pp.653-662.[17]陳旭群, "尿素感測器之研製", 國立陽明大學醫學工程研究所碩士論文, 1987.[18]黃錦城, "壓電晶體生物感測器之原理與應用", 食品工業月刊, 第26卷第8期, 1997, pp.8-16.[19]S. Zhang, G. Wright, Y. Yang, "Materials and techniques for electrochemical biosensor design and construction", Biosensors and Bioelectronics 15, 2000, pp.273-282.[20]陳永銘, "尿素代謝、毒性、測量以及臨床應用", 腎臟與透析, 第3卷第1期, 1991, pp.2-7.[21]曾國輝, "大學生物化學(上)", 藝軒圖書出版社, pp.444-454.[22]陳國誠, "微生物酵素工程學", 藝軒圖書出版社, pp.264-267.[23]Brian R. Eggins, "Biosensors:an introduction", John Wiley & Sons, pp.31-35.[24]J. Van Der Spiegel, I. Lauks, P. Chan and D. Babic, "The extended gate chemical sensitive field effect transistor as multi-species microprobe", Sensors and Actuators B 4, 1983, pp.291-298.[25]T. Katsube, T. Araki, M. Hara, T. Yaji, Si Kobayashi and K. Suzuki, "A multi-species biosensor with extended-gate field effect transistors", Proceeding of 6th Sensor Symposium, Tsukuba Japan, 1986, pp.211-214.[26]L.L. Chi, J.C. Chou, W.Y. Chung, T.P. Sun and S.K. Hsiung, "Study on extended gate field effect transistor with tin oxide sensing membrane", Material Chemistry and Physics 63, 2000, pp.19-23.[27]邱嘉政, "延伸式閘極離子感測場效電晶體穩定度之研究", 中原大學電子工程研究所碩士論文, 2000.[28]S.K. Hsiung, J.C. Chou, W.Y. Chung, T.P. Sun, H.K. Liao, "Fabrication of a multi-structure ion sensitive field effect transistor with a pH sensing layer of a tin oxide thin film", United Stats Patent (2001-2021 yrs), Patent Number: 6218208,Application Date: April 17, 2001, NSC-87-2218-E-033-007.[29]S.K. Hsiung, J.C. Chou, W.Y. Chung, T.P. Sun, H.K. Liao, C.L. Wu, "Ion sensitive transistor", United Stats Patent (2001-2021 yrs), Patent Number: 6236075,Application Date: May 22, 2001, NSC-87-2218-E-033-007.[30]J. Janata, "Electrochemistry of chemically sensitive field effect transistors", Sensors and Actuators 4, 1983, pp.255-265.[31]D.E. Yate, S. Levine and T.W. Healy, "Site-binding model of the electrical double layer at the oxide/water interface", Journal of the Chemical Society Faraday Transactions I 70, 1974, pp.1807-1818.[32]何敏夫, "臨床生化學", 國立編譯館, pp.148-153.[33]G.G. Guilbault, J.G. Montalvo, "An enzyme electrode for the substrate urea", Journal of the American Chemical Society 92, 1970, pp.2533-2538.[34]S.S. Kuan, G.G. Guilbaut, "Ion-selective electrodes and biosensors on ISEs’", I. Karube and G. S. Wilson, pp.135-152.[35]D.G. Pijanowska, "Analysis of factors determining parameters of ion sensitive field effect transistors as the sensors of biomedical quantities", Institute of Biocybernetics and Biomedical Engineering, Poland, 1996.[36]S. Zamponi, B.L. Cicero, L.D. Ciana, S. Sacco, "Urea solid-state biosensor suitable for continuous dialysis control", Talanta 43, 1996, pp.1373-1377.[37]A. Silber, M. Bisenberger, C. Brauchle, N. Hampp, "Thick-film multichannel biosensors for simultaneous amperometric and potentiometric measurements", Sensors & Actuators B 30, 1996, pp.127-132.[38]J.H. Shin, S.Y. Yoon, I.J. Yoon, S.H. Choi, S.D. Lee, H. Nam, G.S. Cha, "Potentiometric biosensors using immobilized enzyme layers mixed with hydrophilic polyurethane", Sensors and Actuators B 50, 1998, pp.19-26.[39]J.M.C.S. Magalhaes, A.A.S.C. Machado, "Urea potentiometric biosensor based on urease immobilized on chitisan membranes", Talanta 47, 1998, pp.183-191.[40]I. Walcerz, S. Glab, R. Koncki, "Potentiometric enzyme electrode in flow injection system for the determination of urea in human serum sample", Analytica Chimica Acta 369, 1998, pp.129-137.[41]C. Eggenstein, M. Borchardt, C. Diekmann, B. Grundig, C. Dumschat, K. Cammann, M. Knoll, F. Spener, "A disposable biosensor for urea determination in blood based on an ammonium-sensitive transducer", Biosensors and Bioelectronics 14, 1999, pp.33-41.[42]R. Koncki, A. Radomask, S. Glab, "Potentiometric determination of dialysate urea nitrogen", Talanta 52, 2000, pp.13-17.[43]R. Koncki, A. Radomask, S. Glab, "Bioanalytical flow-injection system for control of hemodialysis adequacy", Analytica Chimica Acta 418, 2000, pp.213-224.[44]C. Ritter, F. Heike, K. Herbert, K.F. Josef, L. Susanne, N. Christian, O. Helmut, P. Gabriele, S. Bernhard, S. Marieluise, S. Wolfgang, S. Gregor, "Multiparameter minaturised sensor arrays for multiple use", Sensors and Actuators B 76, 2001, pp.220-225.[45]C. Eppelsheim, R. Aubeck, N. Hampp, "Comparison of potentiometric enzyme sensors for urea and penicillin-G: differential thick-film sensors versus classical electrodes", Journal of Membrane Science 100, 1995, pp.131-137.[46]I. Walcerz, R. Koncki, E. Leszczynska, S. Glab, "Enzyme biosensors for urea determination based on an ionophore free pH membrane electrode", Analytica Chimica Acta 315, 1995, pp.289-296.[47]C. Eggenstein, M. Borchardt, C. Dumschat, B. Grundig, K. Cammann, F. Spener, M. Knoll, "Potentiometric biosensor in double matrix membrane technology", Biosensors and Bioelectronics 10, 1995 pp.595-600.[48]T. Osaka, S. Komaba, M. Seyama, K. Tanabe, "High-sensitivity urea Sensor based on the composite film of electroinactive polypyrrole with polyion complex", Sensors and Actuators B 35-36, 1996, pp.463-469.[49]S. Komaba, M. Seyama, T. Momma, T. Osaka, "Potentiometric biosensor for urea based on electropolymerized electroinactive polypyrrole", Electrochimica Acta 42, 1997, pp.383-388.[50]R. Koncki, A. Chudzik, I. Walcerz, "Urea determination using pH-enzyme electrode", Journal of Pharmaceutical & Biomedical Analysis 21, 1999, pp.51-57.[51]R. Koncki, I. Walcerz, E. Leszczynska, "Enzymatically modified ion-selective electrodes for flow injection analysis", Journal of Pharmaceutical & Biomedical Analysis 19, 1999, pp.633-638.[52]T. Krawczynski, M. Moszczynska, M. Trojanowicz, "Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor", Biossensors and Bioelectronics 15, 2000, pp.681-691.[53]T.K.V. Krawczyk, M. Trojanowicz, A. Lewenstam, "Enzymatic flow-injection determination of urea in blood-serum using potentiometric gas sensor with internal nonactin based ISE", Talanta 41, 1994, pp.1229-1236.[54]O.A. Boubriak, A.P. Soldatkin, N.F. Starodub, A.K. Sandrovsky, A.K. Elskaya, "Determination of urea in blood serum by a urease biosensor based on an ion-sensitive field-effect transistor", Sensors and Actuators B 26-27, 1995, pp.429-431.[55]D.G. Pijanowska, W. Torbicz, "pH-ISFET based urea biosensor", Sensors and Actuators B 44, 1997, pp.370-376.[56]N. Jaffrezic-Renault, C. Martelet, "Semiconductor-based micro-biosensors", Synthetic Metals 90, 1997, pp.205-210.[57]C. Jimenez, J. Bartrol, N.F. Rooij, M. Koudelka-Hep, "Use of photopolymerizable membranes based on polyacrylamide hydrogels for enzymatic microsensor construction", Analytica Chimica Acta 351, 1997, pp.169-176.[58]C. Puig-Lleixa, C. Jimenez, J. Alonso, J. Bartroli, "Polyurethane-acrylate photocurable polymeric membrane for ion-sensitive field-effect transistor based urea biosensors", Analytica Chimica Acta 389, 1999, pp.179-188.[59]A.B. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz, I. Willner, "Enzyme monolayer-functionalized field-effect transistors for biosensor applications", Sensors and Actuators B 70, 2000, pp.222-231.[60]崔誠文, 金昶秀, 南東弦, 孫炳基, 金宜洛, "ISFET urea sensor using PVA-SbQ polymer", Journal of Korean Chemical Society 36, 1992, pp.496-503.[61]J. Munoz, C. Jimenez, A. Bratov, J. Bartroli, S. Alegret, C. Dominguez, "Photosensitive polyurethanes applied to the development of CHEMFET and ENFET devices for biomedical sensing", Biosensors and Bioelectronics 12, 1997, pp.577-585.[62]S. Anne, J.R. Nicole, M. Claude, C. Serge, "A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip", Talanta 50, 1999, pp.219-226.[63]N. Jaffrezic, K. Ean, A. Senillou, J.-M. Chovelon, C. Martelet, "Development of new polymeric membranes for ENFETs for biomedical and environmental applications", Analusis 27, 1999, pp.578-586.[64]B.J. Blalock, P.E. Allen, G.A. Rincon-Mora, "Designing 1-V op amps using standard digital CMOS technology", IEEE Trans. on Circuits and Systems Ⅱ 45, 1998, pp.769-780.[65]W.Y. Chung, M.H. Yeh, J.C. Chen, S.K. Hsiung, "Design of a low-voltage instrumentation amplifier for enzyme-extended-gate field effect transistor based urea sensor application", The 1st IEEE International Workshop on Electronic Design, Test and Applications, January 29-31, 2002, pp.177-180.[66]王培蒸, "可攜式酸鹼度計之混模積體電路設計", 中原大學電子工程研究所碩士論文, 1999.[67]F. Bahmani, S.M. Fakhraie, A. Khakifirooz, "A rail-to-rail, constant-Gm, 1-volt CMOS opamp ", Proceedings of the IEEE International Symposium on Circuits and Systems, May 28-31, 2000, pp.669-672.[68]R.S. Glass, "Urea biosensor for hemodialysis monitoring", United Stats Patent, Patent Number: 5858186,Application Date: January 12, 1999.[69]H. Suzuki, A. Sugama, N. Kojima, "Small glass electrode", United Stats Patent, Patent Number: 5837113,Application Date: November 17, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊