|
Reference[1] Shockley, W., U.S. Patent NO. 2, 569, 347, 1951.[2] Kroemer, H., Theory of a wide-Gap Emitter for Transistors. Proc. IRE, Vol.45, 1957, p. 1535.[3] Kroemer, H., Heterostructure Bipolar Transistor Transistors and Integrated Circuits, Proc. IEEE, Vol.70, 1982, p. 13[4] Asbeck, P. M., et al., Heterojunction Bipolar Transistors for Ultra High Speed Digital and Analog Applications, IEDM Tech. Digest, 1988[5] Liou, L. L., et al., Thermal Stability Analysis of Multiple Finger Microwave AlGaAs/GaAs Heterojunction Bipolar Transistors, IEEE Int. Microwave Symp. Tech. Digest, 1993[6] A.Kapila and V.Malhotra, Surface Passivation of Compound Semiconductors, IEEE, 1997.[7] Houser, J. R., The Effects of Distributed Base Potential on Emitter-Current Injection Density and Effective Base Resistance for Stripe Transistor Geometries, IEEE Trans. Electron Devices, Vol. ED-11, 1964, pp. 238-242[8] Yuan, J. S., and J. J. Liou, Circuit Modeling for Transient Emitter Crowding and Two-Dimensional Current and Charge Distribution Effects, Solid State Electron, Vol. 32, August 1989, pp. 623-631[9] Liou, J. J., F. A. Lindholm, and et al., Modeling the cutoff Frequency of Heterojunction Bipolar Transistors Subjected to High Collector-Layer Current J. Appl. Phys., Vol. 67, 1990, pp. 7125-7131[10] Liou, J. J., An Improved and Analytical Model for the Current Transport in Graded Heterojunction Bipolar Transistors, Solid State Electron, Vol. 38, 1995, p.946[11] Liou, J. J., et al., An Analytical Model for Current Transport in AlGaAs/GaAs Abrupt HBTs with a Setback Layer, Solid State Electron, Vol. 36, 1993, pp. 819-825[12] Mazier, C. M., M. S. Lundstrom, On the Estimation of Base Transit Time in AlGaAs/GaAs Bipolar Transistors, IEEE Electron Device Letter, Vol. EDL-8, 1987, pp. 90-92[13] Azoff, E. M., Energy Transport Numerical Simulation of Graded AlGaAs/GaAs Heterojunction Bipolar Transistors, IEEE Trans. Electron Devices, Vol. 36, 1989, pp. 609-616 [14] Chatterjee, A., et al., Theory of abrupt Heterojunctions in Equilibrium, Solid State Electron, Vol. 24, 1981, pp. 1111-1115[15] Lundstrom, M.S. et al., Modeling Semiconductor Heterojunctions in Equilibrium, Solid State Electron, Vol. 25, 1982, pp. 683-691[16] Unln and Nussbaum, Band Discontinuities as Heterojunction Device Design Parameters, IEEE Trans. Electron Devices, Vol. ED-33, 1986, pp. 616-619[17] Chang, K. M., Band Discontinuities: A Simple Electrochemical Approach, IEEE Trans. Electron Devices, Vol. 37, 1990, pp. 883-886[18] Arnold, D., et al., Determination of the Valence-band Discontinuity Between GaAs and (Al,Ga)As by the Use of P+-GaAs- (Al,Ga)As-P-GaAs Capacitators, Appl. Phys. Lett., Vol.45, 1984, p. 1237[19] Wang, W. I., et al., High Mobility Hole Gas and Valence-Band Offset in Modulation-Doped P-AlGaAs/GaAs Heterojunctions, Appl. Phys. Lett., Vol.45, 1984, p. 639[20] Perlman, S. S., and D. L. Feucht, p-n Heterojunction, Solid State Electron, Vol. 7, 1964, p. 911[21] Lundstom, M. S., Boundary Conditions for p-n Heterojunctions, Solid State Electron, Vol. 27, 1984, p. 491[22] Pulfrey, D. L., et al., Electron Quasi-Fermi Level Splitting at the Base-Emitter Junction of AlGaAs/GaAs HBTs, IEEE Trans. Electron Devices, Vol. 40, 1993, p. 1183[23] W. Liu and J. Harris, Diode Ideality Factor for Surface Recombination Current in AlGaAs/GaAs Heterojunction Bipolar Transistors, IEEE Trans. Electr. Dev. 39, 1992, pp. 2726-2732[24] Liou, J. J., Advanced Semiconductor Device Physics and Modeling, Norwood: Artech House, 1994, Chapter 1[25] Shur, M., Physics of Semiconductor Devices, Englewood Cliffs, NJ: Prentice Hall, 1990[26] Maycock, D. P., Thermal Conductivity of Silicon, Germanium, Ⅲ-Ⅴ Compound and Ⅲ-Ⅴ Alloys, Solid-State Electron., Vol. 10, 1967, P. 161[27] Joyce, W. B., Thermal Resistance of Heat Sink with Temperature-Dependent Conductivity, Solid State Electron., Vol. 18, 1975, P. 321[28] Ali, F., and A. Gupta, eds., HEMTs and HBTs: Devices, Fabrication, and Circuits, Norwood, MA: Artech House, 1991[29] Malik, R. J., et al., Carbon Doping in Molecular Beam Epitaxy of GaAs from a Heated Graphite Filament, Appl. Phys. Lett., Vol. 54, 1989, p. 39[30] Bowler, D. L., and F. A. Lindholm, High Current Regimes in Transistor Collector Region, IEEE, Trans. Electron Devices, Vol. ED-20, 1973, p. 257[31] Kirk, Jr., C. T., A Theory of Transistor Cutoff Frequency Falloff at High Current Densities, IEEE Trans. Vol. Ed-9, 1962, p. 164[32] W. R. Runyan and T. J. Shaffer, Semiconductor Measurements and Instrumentation, The McGraw-Hill Companies, Inc, pp. 279~307[33] W. R. Runyan and T. J. Shaffer, Semiconductor Measurements and Instrumentation, The McGraw-Hill Companies, Inc, pp. 386~389[34] W. R. Runyan and T. J. Shaffer, Semiconductor Measurements and Instrumentation, The McGraw-Hill Companies, Inc, pp. 357~377[35] T. A. Carlson, Photoelectron and Auger Spectroscopy, Plenum Press, New York, 1975[36] C.S. Fadley, Basic Concepts in X-Ray Photoelectron Spectroscopy, in Electron Spectroscopy: Theory, Techniques and Applications, Vol.2, Academic Press, New York, 1978, pp. 2~156[37] P.K. Gosh, Introduction to Photoelectron Spectroscopy, Wiley-Interscience, New York, 1983[38] D. Briggs and M.P. Seah, Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, Wiley, New York, 1983[39] J. B. Lumsden, X-Ray Photoelectron Spectroscopy, in Metals Handbook, Ninth Ed, Am. Soc. Metals, Metals Park, OH, 10, pp. 568~580, 1986[40] N.Martensson, ESCA, in Analytical Techniques for Thin Film Analysis, Academic Press, San Diego, CA, 1988, pp. 65~109 [41] C. Nordling, K. Siegbahn, et al, Application of Electron Spectroscopy to Chemical Analysis, Z. Phys. Vol. 178, pp. 433~438, 1964[42] C. Nordling, K. Siegbahn, et al, Electron Spectroscopic Determination of the Chemical Valence State, Z. Phys. Vol. 178, pp.439~444, 1964[43] Hayrettein Yuzer, Hacer Dogan, et al, Analysis of Sulfide Layer on Gallium Arsenide Using X-ray Photoelectron Spectroscopy Spectrochemical ACTA PARTB55, pp.991~996, 2000[44] Z. L. Yuan, X.M. Ding, et al, Investigation of Neutralized (NH4)2S Solution Passivation of GaAs (100) surfaces, American Institute of Physics, pp3081~3083, 1997[45] J. Gillespie, C. Bozada, et al, Passivated InGaP/GaAs Heterojunction Bipolar Transistor Technology using Pt/Ti/Pt/Au Base Contacts, IEEE, 1997, III-4, pp.99~108[46] Guido Hirsch, Peter Kruger, and Johannes Pollmann, Surface Passivation of GaAs (001) by Sulfur: an Initial Studies, Surface Science, 1998, pp.778~781[47] A. B. M. O. Islam, T. Tambo, and C. Tatsuyama, Passivation of GaAs Surface by GaS, VACUUM, 2000, pp. 894~899[48] Y. Dong, X. M. Ding and X.Y. Hou, Sulfur Passivation of GaAs Metal-Semiconductor Field-Effect Transistor, Applied Physics Letters, Vol. 77, Num. 23, 2000, pp. 3839~3841[49] Vasily N. Bessolov, et al, Sulfidization of GaAs in Alcoholic Solutions: a Method having an Impact on Efficiency and Stability of passivation, Meterials Science & Engineering, B44, 1997, pp. 376~379[50] H. H. Lee, et al, Surface Passivation of GaAs, Appl. Phys. Lett. 54 (8), 20 Feb. 1989, pp724~726[51] B.A. Cowans, et al, X-ray Photoelectron Spectrodcopy of Ammonium Sulfide Treated GaAs (100) Surfaces, Appl. Phys. Lett. 54 (4), 23, Jan., 1989, pp. 365~367[52] J.Yota and V. A. Burrows, Chemical and Electrochemical Treatments of GaAs with Na2S and (NH4)2S Solutions: A Surface Chemical Study, J. Vac. Sci. Technol. A 11 (4), Jul/Aug, 1993, pp.1083~1088[53] X.Y. Hou, W. Z. Cai, et al, Electrochemical Sulfur Passivation of GaAs, Appl. Phys. Lett. 60 (18), 4 May, 1992, pp. 2252~2254[54] B. A. Kuruvilla, A. Datta, et al, Atomic Force Microscopy of Selenium Sulfide Passivated GaAs (100) Surface, Appl. Phys. Lett. 69 (3), 15 July, 1996, pp. 415~417[55] Juin J.Liou,Principles and Analysis of AlGaAs/GaAs Heterojunction Bipolar Transistors[56] William Liu,Fundamentals of Ⅲ-Ⅴ Devices HBTs,MESFETs,and HFETS/HEMTS[57] A.Kapila and V.Malhotra,Surface Passivation of Compound Semiconductors,IEEE,1997[58] J.Yota and V.A.Burrows,Chemical and Electrochemical Treatments of GaAs with Na2S and (NH4)2S Solutions: A Surface Chemical Study,American Vacuum Society,1993[59] N.Yamamoto,K.Kishi, Ammonium Sulfide Combined Etching(ACE):an Effective Treatment for Reducing Impurities Prior to MOVPE InP Regrowth in a Process using Hydrocarbon Gas Reactive Ion Etching(RIE),Journal of Crystal Growth 193,1998,16~22[60] Harettin Yuzer,Hacer Dogan,Analysis of Sulfide Layer on Gallium Arsenide Using X-ray Photoelectron Spectroscopy,Spectrochemica Acta Part B 55 ,2000 991~996[61] P.G.Neudeck,M.S.Carpenter,Significant Long-Term Reduction in n-Channel MESFET Subthreshold Leakage Using Ammonium-Sulfide Suface Treated Gates,IEEE RLECTRON DEVICE LETTERS,Vol.12,NO.10,OCT.1991[62] C. J. Sandroff, R. N. Nottenburg, J.-C. Bischoff, and R. Bhat,Dramatic Enhancement in the Gain of a GaAs/AlGaAs Heterostructure Bipolar Transistor by Surface Chemical Passivation,Appl. Phys. Lett. 51(1), 6 July 1987 pp33~35[63] Sanguan Anantathanasarn, et al, Surface Passivation of GaAs by Ultra-Thin Cubic GaN Layer, Applied Surface Science, 2000, pp.159~160[64] Min-Gu Kang, et al, Pretreatment of GaAs (001) for Sulfur Passivation with (NH4)2Sx, Thin Solid Films, 1996, pp.328~333[64] Hann-Ping Hwang, et al, A Comparative Study of the Passivation Films on AlGaAs/GaAs Heterojunction Diodes and Bipolar Transistors, IEEE Transactions on Electron Devices, VOL. 48, NO. 2, Feb., 2001, pp. 185~189[65] Hong Wang, et al, Understanding the Degradation of InP/InGaAs Heterojunction Bipolar Transistors Induced by Silicon Nitride Passivation, 2001 IPRM conference Proceedings, 13th IPRM 14-18, May 2001 Nara, Japan[66] R. T. Yoshioka, et al, Improving Performance of Microwave AlGaAs/GaAs HBTs Using Novel SiNX Passivation Process, SBMO/IEEE MTT-S IMOC’99 Proceedings, 1999, pp. 108~111[67] Yousef Zebda and Omar Qasaimeh, Currents and Currents Gain Analysis of Passivated Heterojunction Bipolar Transistors (HBT), Transactions On Electron Devices, IEEE, Vol. 41. NO.12, DEC. 1994, pp. 2233~2240[68] C. MANEUX, et al, Analysis of the Surface Base Current Drift in GaAs HBT’s, Microelectron. Reliab, Vol. 36, 1996, pp. 1903~1906[69] R. E. Welser, et al, High Performance Al0.35Ga0.65As/GaAs HBT’s, IEEE Electron Device Letters, Vol. 21, NO. 5, May 2000, pp. 196~199[70] G. Jackson, et al, High Gain, Pulsed Power AlGaAs/GaAs HBTs, Solid-state Elec., Vol. 38, No. 9, 1995, pp. 1641~1644[71] Il-Ho Kim, Effects of Emitter Structure Variation on the RF Characteristics of AlGaAs/GaAs HBTs, Materials Letters, Vol. 49, 2001, pp. 219~223[72] K. Mochizuki, et al, AlGaAs/GaAs HBTs with Buried SiO2 In The Extrinsic Collector, Solid-state Elec., Vol. 38, NO. 9, 1995, pp. 1619~1622[73] Bin Li, Sheila Prasad, et al, A numerical Study of AlGaAs/GaAs HBTs, Solid-State Electro., Vol. 43, 1999, pp. 839~843[74] A. Kager, et al, A Numerical Study of the Effect of Base and Collector Structures on the Performance of AlGaAs/GaAs Multi-finger HBTs, Solid-State Elec., Vol. 38, No. 7, 1995, pp.1339~1349
|