臺灣博碩士論文加值系統

(44.201.97.0) 您好！臺灣時間：2024/04/24 11:36

:::

詳目顯示

:

• 被引用:4
• 點閱:233
• 評分:
• 下載:0
• 書目收藏:0
 我們選擇傳統PWM降壓型(Buck)電力轉換器與Divakar和Ioinovici兩位學者所提出的零電壓轉移(Zero Voltage Transition) PWM降壓型電力轉換器，利用不連續系統單時間尺度平均法(AM-OTS-DS)與不連續系統雙時間尺度平均法(AM-TTS-DS)求得兩種電力轉換器的非線性數學模式。 在本論文中，我們以這幾年來被廣泛使用於非線性控制的T-S模糊模式(Takagi-Sugeno fuzzy model)，對上述直流-直流電力轉換器(DC-DC power converter)作T-S模糊模式化(modeling)，並且以我們所提出的積分型T-S模糊控制(Integral T-S fuzzy control)設計輸出調節(output regulation)控制器、穩定性分析(考量 performance)與閉迴路系統模擬。 最後我們實作上述兩種直流-直流電力轉換器並且以類比電路實現積分型T-S模糊控制器，而實作的結果也驗證了積分型T-S模糊控制器具有零穩態誤差特性，並對干擾有較好之強健性(robustness)。
 We model the conventional PWM buck converter and the Zero Voltage Transition PWM buck converter by using Averaging Method for One-Time-Scale Discontinuous System (AM-OTS-DS) and Averaging Method for Two-Time-Scale Discontinuous System(AM-TTS-DS), respectively. To deal with the regulation problem for the nonlinear system via LMI approach, we represent both of the converterdynamics in T-S fuzzy models. The integral T-S fuzzy controller with \$H_infty\$ performance is proposed to achieve better robustness for disturbance. The regulator gains are obtained by solving LMIs. Then the performance is confirmed by carrying out numerical simulations. The hardware of theconventional PWM buck converter and the ZVT PWM buck converter are implemented. The integral T-S fuzzy controllers for the conventional PWM buck converter and the ZVT PWM buck converter realized by operational amplifiers and analog multiplexer are also implemented by our laboratory. The experiments based on the set-up hardware illustrate satisfactory results.
 1 Introduction 11.1 Motivation 11.2 Survey of The Previous Researches 21.3 Organization of This Thesis 32 Modeling for DC to DC PWM Buck Converter 52.1 Conventional PWM Buck Converter 52.1.1 Operation Principle of Conventional PWM Buck Converter 52.1.2 Averaging Method of One Time Scale Discontinuous System, AM-OTS-DS 62.1.3 Modeling for conventional PWM Buck Converter 72.2 Zero Voltage Transition PWM Buck Converter 92.2.1 Operation Principle of Zero Voltage Transition PWM Buck Converter 92.2.2 Averaging Method for Two Time Scale Discontinuous System, AM-TTS-DS 142.2.3 Modeling for Zero Voltage Transition Buck Converter 153 Integral Takagi-Sugeno Fuzzy Regulation 173.1 T-S Fuzzy Model 173.2 Parallel Distributed Compensation 203.3 Linear Matrix Inequalities 203.4 Regulation of Integral T-S Fuzzy Controller 213.4.1 Design Control Gains via LMIs 243.4.2 Implementation of Control Law 253.4.3 Simulation for the Conventional PWM Buck Converter 263.5 Regulation of Integral T-S Fuzzy Control with \$H_infty\$ Performance 273.5.1 Design \$H_infty\$ Control Gain via LMIs 293.5.2 Implementation of \$H_infty\$ Control Law 313.5.3 Simulation for ZVT PWM Buck Converter 314 Experiment 354.1 Input Filter 354.2 MOSFET Gate Driver 364.3 Current Sensor 374.4 Converter Implementation 384.4.1 The Conventional PWM Buck Converter 384.4.2 The ZVT PWM Buck Converter 414.5 Controller Realization 434.5.1 The Conventional PWM Buck Converter 434.5.2 The ZVT PWM Buck Converter 444.6 Summary 455 Conclusions 505.1 Discussion of Contributions 505.2 Suggestions and Future Research 50A Solutions of Differential Equations 52A.1 Solutions for Differential Equation of Stage 1 52A.2 Solutions for Differential Equation of Stage 2 53A.3 Solutions for Differential Equation of Stage 3 54A.4 Solutions for Differential Equation of Stage 4 55A.5 Solutions for Differential Equation of Stage 6 56B Diagrams of The Circuits 57C Part Lists for Experiments 62D Photographs of Experiment 66Reference 69
 [1]J. L. Lin, and H. Y. Hsieh, ``Dynamics Analysis and Controller Synthesis for Zero-Voltage-Transition PWM Power Converters", IEEE Transactions on Power Electronics, vol. 15, no. 2, pp.205-214, 2000.[2] J. Sun, and H. Grotstollen, ``Averaged Modelling of Switching Power Converters: Reformulation and Theoretical Basis", IEEE Conf., pp.1165-1172, 1992.[3] B. P. Divakar, and A. Ioinovici, ``PWM Converter with Low Stress and Zero Capacitive Turn-On Losses", IEEE Transactions on Aerospace and Electronic Systems, vol. 33, no. 3, pp.913-920, 1997.[4] H. Y. Hsieh, ``Dynamics Analysis and Controller Synthesis for a Zero Voltage Transition Soft Swithcing Power Converter", Master Thesis of NCKU, 1998.[5] W. C. Lin, ``Fuzzy Model Based Tracking Control with \$H_infty\$ Performance", Master Thesis of CYCU, 2001.%[6] K. Y. Lian, T. S. Chiang, C. S. Chiu, and P. Liu, ``Synthesis of Fuzzy Model-Based Designs to Synchronization and Secure Communications for Chaotic Systems", IEEE Trans. Syst., Man, Cybern. B, vol. 31, no. 1, pp.66-83, Feb 2001.[7] H. K. Khalil, ``Nonliear Systems", Prentice-Hall, Inc, pp.488-491, 1996.[8] R. W. Erickson, and D. Maksimovic, ``Fundamentals of Power Electronics", Kluwer Academic Publishers, 2001.[9] A. I. Pressman, ``Swithcing Power Supply Design", McGraw-Hill, 1991.[10] H. K. Lam, F. H. F. Leung, and P. K. S. Tam, ``Fuzzy Control of Dc-Dc Switching Converters Based on TS-Modeling Approach", IEEE Conf., pp.1052-1054, 1998.[11] F. C. Lee, ``High-Frequency Quasi-Resonant Converter Technologies", Proceedings of The IEEE, vol. 76, no. 4, pp.377-390, 1988.[12] F. C. Lee, ``High-Frequency Quasi-Resonant and Multi-Resonant Converter Technologies", IEEE Conf., pp.509-521, 1988.[13] G. Hua, and F. C. Lee, ``Soft-Switching Techniques in PWM Converters", IEEE Transactions on Inductrial Electronics, vol. 42, no. 6, pp.595-603, 1995.[14] H. Mao, F. C. Y. Lee, X. Zhou, H. Dai, M. Cosan, and D. Boroyevich, ``Improved Zero-Current Transition Converters for High-Power Applications", IEEE Transactions on Inductry Applications, vol. 33, no. 5, pp.1220-1232, 1997.[15] G. Hua, C. S. Leu, Y. Jiang, and F. C. Y. Lee, ``Novel Zero-Voltage-Transition PWM Converters", IEEE Transactions on Power Electronics, vol. 9, no. 2, pp.213-219, 1994.[16] G. Hua, E. X. Yang, Y. Jiang, and F. C. Lee, "Novel Zero-Current-Transition PWM Converter", IEEE Transactions on Power Electronics, vol. 9,no. 6, pp.1220-1232, 1994.[17] K. H. Liu, and F. C. Y. Lee, ``Zero-Voltage-Switching Technique in DC/DC Converters", {it IEEE Transactions on Power Electronics,} vol. 5,no. 3, pp.293-304, 1990.
 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 升降壓型電源轉換器之T-S模糊模式控制 2 終端滑動控制在DC-DC降壓型Converter的應用 3 升-降壓型LED驅動電路之T-S模糊控制器設計 4 LED驅動電路之T-SFuzzy控制器研究 5 無電流感測電源轉換器之模糊控制 6 電源轉換器之積分型模糊控制器設計

 無相關期刊

 1 以LMI為基礎之模糊與非線性系統的精確與近似控制 2 模糊模式之狀態估測與穩定性分析 3 多感測器資料融合與自走車導引之研究 4 旋轉式與線性式感應馬達之適應性控制 5 非線性系統之強健型切換式模糊控制 6 雙軸追日型太陽能發電系統海上環境之最大功率追蹤設計與實現 7 非線性系統之強健積分型T-S模糊輸出調節器設計 8 數位式LLC諧振轉換器之 同步整流控制方法與諧振頻率追蹤技術 9 以微控制器實現低待機損耗之返馳式轉換器 10 可調式傳導型EMI濾波器設計 11 多模組並聯電源轉換器之均流控制設計與實現 12 電源轉換器之隨機模糊控制器設計 13 順向式DC-DC電源轉換器之T-S模糊控制設計 14 電源轉換器之積分型模糊控制器設計 15 升降壓型電源轉換器之T-S模糊模式控制

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室