跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳祖錚
研究生(外文):Tsu-Cheng wu
論文名稱:非線性系統之強健型切換式模糊控制
論文名稱(外文):Robust Switching Fuzzy Control for Nonlinear System
指導教授:練光祐
指導教授(外文):Kuang-Yow Lian
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:75
中文關鍵詞:T-S模糊估測器強健型模糊控制T-S模糊模式切換式模糊控制
外文關鍵詞:T-S Fuzzy ModelRobust Fuzzy ControlT-S Fuzzy observerSwitching Fuzzy Control
相關次數:
  • 被引用被引用:2
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

在本論文中,針對兩種非線性系統,離散混沌系統及非完整約束系統,我們分別提出一新的強健型模糊控制器。這強健型模糊控制器是以T-S模糊模式為發展基礎之下,利用線性矩陣不等式技術去設計此控制器的控制增益。首先,對離散混沌系統輸出回授模式追蹤控制作一探討,當被控廠之系統矩陣與參考模式之系統矩陣產生參數誤差時,此誤差容易造成混沌系統的不穩定,因此我們先設計部份控制器以補償此誤差。接下來,當有系統狀態未知時,我們設計一T-S模糊估測器作估測。同時,完成控制器之其餘架構的設計以達到追蹤參考模式。當我們將模糊估測器及參考模式之追蹤控制器合成一誤差系統,可將以上控制器的增益設計轉換成線性矩陣不等式問題,利用MATLAB之工具盒求得。我們利用一Henon Map離散混沌系統作理論上的驗證。
針對非完整約束系統,首先討論不可積之約束條件及運動方程之推導。對其一般系統模式,以T-S模糊模型建立近似主要模式。切換式模糊控制器則以模糊平行分佈補償器來設計,解決了系統不確定、外界干擾、與模糊模式誤差等對系統性能的影響。並且經由較為寬鬆之線性矩陣不等式條件的滿足,控制系統可達到強健穩定化與模式追蹤的成果。最後利用單腳跳動機器人做數值模擬,以驗證預定之效益。


In this thesis, new robust fuzzy controllers are proposed for two class of nonlinear systems, namely discrete-time chaotic systems and nonholonomic systems. The robust controllers are developed based on T-S fuzzy model, where as the LMI technique is used to design the control gain. Fordiscrete-time chaotic systems, we investigate the issue of fuzzy outputfeedback model following control. Here we consider mismatched parameters
occuring in the system matrix of the plant and reference model. To obtain immeasurable states, a T-S fuzzy observer and, in turn, a T-S fuzzy
controller are designed. The stability conditions of the overall error system are formulated into LMI problem. Since simultaneous solution to the
parameter compensation gains, control gain, and estimation gain are not trivial, we address a three steps method to solve the LMIs. The proposed
methodology is applied to the chaotic Henon Map. The numerical simulations results reveal the validity of theoretical derivation. The nonholonomic systems arising from a no-slip constraint or a constraint on the conservation of generalized momentum. For this class of systems, a general approxmation T-S fuzzy model is introduced to assure that the controllability of all local linear subsystems in fuzzy rules can be held. Then, based on this fuzzy model, a switching fuzzy controller via PDC concept is proposed for the control issues of stabilization and model following. The stability condition and, in turn, the control gain design are reformulated to an LMI problem. The proposed methodology is applied to a one-leg hopping robot, a typical nonholonomic system. The numerical simulations illustrates satisfactory results.


1. Introduction 1
1.1 Background 1
1.2 Research Motivation 3
1.3 Organization of Thesis 4
2. Takagi-Sugeno Fuzzy System 5
2.1 T-S Fuzzy Model 5
2.2 Switching T-S Fuzzy Model 10
2.3 Controller Designed via PDC Concept 12
2.4 Control Gain via LMI 12
2.5 Conclusions 13
3. Fuzzy Output Feedback Tracking Control for
Discrete-time Chaotic systems
3.1 Introduction 14
3.2 Compensation for Mismatch Parameters in T-S Fuzzy System Matrices 16
3.3 Fuzzy Tracking Control For Chaotic Systems 19
3.4 Numerical Simulationsy 25
3.5 Conclusions 27
4. Switching Based Control of Nonholonomic System 33
4.1 Introduction 33
4.2 A General Fuzzy Modeling of Nonholonmic System 36
4.2.1 Kinematics and Dynamics 36
4.2.2 Switching T-S Fuzzy Modeling 39
4.2.3 An Example of Nonholonomic System 41
4.3 A Switching Fuzzy Control Design via Switching PDC 46
4.4 Switching-Based Model Following Control With H^infty Performance 51
4.4.1 An Ideal Swiching T-S Fuzzy Reference Model 51
4.4.2 A Swiching T-S Fuzzy Model Following Controller Design
Switching PDC 53
4.5 Conclusions 57
5. Conclusions 68
Bibliography 70


[1]- Kazuo Tanaka and Masaaki Iwasaki and Hua O. Wang,``Switching Control of an R/C Hovercraft: Stabilization and Smooth Switching,' IEEE Trans. Syst.,Man, Cybern., vol. 31, no. 6, pp.853-863, 2001.[2]- Zadeh, L.A., ``Fuzzy sets,' Information and Control, 8(3), pp. 338-353, 1965.[3]- K. Tanaka, M. Sugeno, ``Stability analysis and design of fuzzy control systems,' Fuzzy Sets and Systems, Vol. 45, pp.135-156, 1992.[4]- K. Tanaka, M. Sano, ``A robust stabilization problem of fuzzy control systems and it's application to backing up cintrol of a truck-trailer,' IEEE Trans. Fuzzy Syst., Vol. 2, pp. 119-134,1994.[5]- H.O. Wang, K. Tanaka, M.F. Griffin, ``An approach to fuzzy control of nonlinear systems: stability and design issues,'IEEE Trans. Fuzzy Syst., Vol. 4, pp. 14-23, 1996.[6]- K. Tanaka, T. Kosaki, H.O. Wang, ``Backing control problem of a mobile robot with multiple trailers: fuzzy modeling and LMI-based design,'IEEE Trans. System, Man, Cybern.,Vol. 283, pp. 329-337,1998.[7]- H.O. Wang, K. Tanaka, M.F. Griffin, ``Parallel distributed compensation of nonlinear systems by Takagi-Sugeno fuzzy model,' Proceedings of the Fuzzy-IEEE/IFES., Vol. 95, pp. 531-538, 1995.[8]- A. Isidori and W. Kang, ``$H_infty $ control via measurement feedback for general nonlinear systems,' IEEE Trans. Autom. Contr. vol. 40, pp. 466-472, 1995.[9]- van der Schaft, A.J, ``On a state space approach to nonlinear $H_infty $ control,'Syst. Contr. Letters vol. 16, pp. 1-18, 1991.[10]- van der Schaft, A.J, ``$L_2$-gain analysis of nonlinear systems and nonlinear state feedback $H_infty $ control,' IEEE Trans. Autom. Contr. vol. 37, pp. 770-784, 1992.[11]- Zames, G. ``Feedback and optimal sensitivity: model reference ransformations, multiplicative seminorms, and approximate inverse,' IEEE Trans. Autom. Contr. vol. 26, pp. 301-320, 1981.[12]- E.Ott, C. Grebogi and J. A.Yorke, 'Controlling Chaos,' Phys. Rev. Lett, vol. 64, pp.1196-1199, 1990.[13]- X. Dongand G. Chen, ``Control of discrete-time chaotic systems,'Proc. of 1992Amer. Conf.,Chicago, IL, June24-26,pp2502-2503, 1992.[14]- T. Takagi and M. Sugeno, ``Fuzzy identification of systems and its applications to modeling and control,' IEEE Trans. Syst.,Man, Cybern., vol. 15, no. 1, pp. 116-132, 1985.[15]- K. Tanaka, T. Ikeda, and H. O. Wang, ``A unified approach to controlling chaos via an LMI-based fuzzy control system design,' IEEE Trans. Circuits Syst. I, vol. 45, no. 10, pp. 1021-1040, 1998.[16]- K.-Y. Lian, T.-S. Chiang, C.-S. Chiu, and P. Liu, ``Synthesis of fuzzy model-based design to synchronization and secure communication for chaotic systems,' IEEE Trans. Syst. Man Cybern. Part B., vol. 31, pp. 66-83, [2001a].[17]- K. Y. Lian, C. S. Chiu, T. S. Chiang, and P. Liu,``Secure communications of chaotic systems with robust performance via fuzzy observer-based design,' Trans. Fuzzy Syst., vol. 9,pp. 212-220, [2001b].[18]- H. J. Lee, J. B. Park and G. Chen, ``Robust fuzzy control of nonlinear systems with parametric uncertainties,' IEEE Fuzzy Syst., vol. 9, pp. 369-379, 2001.[19]- K.-Y. Lian, C.-S. Chiu, and P. Liu, ``LMI-Based Fuzzy Chaotic Synchronization and Communications,' IEEE Trans. Fuzzy Syst.,vol. 9, pp. 539-553, [2001c].[20]- T. Taniguchi, K. Tanaka, and H. O. Wang, ``Fuzzy descriptor system and nonlinear model following control,' IEEE Trans. Fuzzy Syst., vol. 8, pp.442-452, 2000.[21]- A. Jadbabaie,Robust, Non-Fragile Controller Sysnthesis Using Model-Based Fuzzy Systems: A Linear Matrix InequalityApproach, Master Thesis, Univ. New Mexico, pp. 28-41, 1997.[22]- B. S. Chen, C. S. Tseng, and H. J. Uang, ``Mixed $mathcal{H% }_2/mathcal{H}_infty $ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach,'IEEE Trans. Fuzzy Syst., vol.8, pp.249-265, 2000.[23]- C.-S. Tseng, B.-S. Chen, H.-J. Uang, ``Fuzzy tracking control design for nonlinear synamic systems via T-S fuzzy model,' Proc. Automatic Control Conf.}, Taiwan, pp. 581-586, 2000.[24]- L. O. Chua, M. Komuro, and T. Matsumoto, ``The double scroll family, part I: Rigorous proof of chaos,' IEEE Trans. on Circuits. Syst., vol. 33, pp. 1072-1096, 1986.[25]- R. W. Brockett, ``Asymptotic stability and feedback stabilization,' Differential Geometric Control Theory, R. S. Millman, and H. J. Sussmann, Eds., Birkhauser,PP.181-191, 1983.[26]- R. Murray and S. Sastry, ``Nonholonomic Motion Planning: Steering Using Sinusoids,' IEEE Transactions on Automatic Control, vol. 38, no. 5, pp. 700-716, 1993.[27]- A. Astolfi, ``Exponential stabilization of nonholonomic systems via discontinuous control,' Proceedings of the 3rd IFAC Symposium on Nonlinear Control Systems Design, pp. 741-746, 1995.[28]- A. M. Bloch and N. H. McClamroch, ``Control of Mechanical Systems with Classical Nonholonomic Constraints,' Proceeding of 28th IEEE Conference on Decision and Control, pp. 201-205, 1989.[29]- A. M. Bloch and S. V. Drakunov, ``Stabilization of nonholonomic systems via sliding modes,' Proc. of 33rd IEEE Conf. Decision & Control, pp. 2961-2963, 1994.[30]- S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM,Philadelphia, 1994.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top