跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/05 00:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪振堯
研究生(外文):Cheng-Yao Hung
論文名稱:旋轉式與線性式感應馬達之適應性控制
論文名稱(外文):Adaptive Control for Rotary Induction Motors and Linear Induction Motors
指導教授:練光祐
指導教授(外文):Kuang-Yow Lian
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:89
中文關鍵詞:感應馬達線性感應馬達適應性控制摩擦力邊際效應
外文關鍵詞:induction motorslinear induction motoradaptive controlfriction forceend effect
相關次數:
  • 被引用被引用:1
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,主要的研究重點是針對感應馬達與線性感應馬達的半電流饋
送型模型,發展一套統一且系統化的高性能控制器設計方法。所謂的半電流饋
送型模型的控制器設計概念,改善了傳統電流饋送型模型理論推導上的嚴格假
設。
在感應馬達的部分,我們以半電流饋送型模型與LuGre動態摩擦力模型為基
礎,考慮感應馬達的速度控制問題。而在設計過程中我們並不直接對轉子磁通
做估測器設計,而是引進了VDV(Virtual Desired Variables)的設計概念,簡
化了設計上的複雜度;在摩擦力不可量測的狀況下,吾人使用雙估測器架構去
估測此非線性摩擦力模式之參數與狀態。在假設轉子電阻、負載轉矩和摩擦力
狀態與參數未知下的情況下,本論文所提出之適應性控制器不論在數值模擬或
在實驗結果上均展現了良好且一致的速度追蹤特性。
在線性感應馬達部分,由於線性感應馬達和旋轉式感應馬達兩者結構相近
,其差別在於運動方式不同及受到邊際效應的影響,因此吾人利用十分成熟的
感應馬達模型推導方式為基礎推導線性感應馬達的初步模型,最後再針對邊際
效應的影響,提出考慮邊際效應的完整數學模型。之後,仍利用半電流饋送型
模型設計其控制器。在假設負載轉矩和機械參數未知的情況下,利用適應性控
制器估測這些未知常數,並完成速度控制的目的,在數值模擬與實驗結果均得
到良好且一致的速度追蹤特性。
This thesis presents a systematic and high performance semi-current
fed model-based control for both rotary induction motors and linear
induction motors. The new concept, semi current fed model, relaxes
the original assumption that an ideal current loop is achieved which
is quite strict in practical implementations. When controlling rotary
induction motors, a LuGre dynamic friction model is considered along
with the semi-current-fed model. The objective of adaptive speed
control, achieved by an indirect estimation on the rotor flux, is
carried out by using Virtual Desired Variable design methodology.
This approach simplifies the controller synthesis. For the friction
part, assumed to be immeasurable, a double observer is used to
estimate the parameters and states of the nonlinear friction model.
In addition, the rotor resistance, load torque are assumed to be
unknown. Since the structure of the linear induction motor is
quite similar to a rotary one, which we need to consider that the
method of motion and end-effect is the only differences, the second
part of this thesis deals with the control in an analogous method.
Therefore, once deriving the mathematical model considering
end-effects, control is achieved while torque load and mechanical
parameters are considered to be unknown.
Finally, numerical simulations and practical experiment on
both rotary induction motors and linear induction motors are
found to be consistent with theoretical derivations.
1. Introduction 1
1.1 Background 1
1.2 Contribution 3
1.3 Research Motivation 4
1.4 Organization of Thesis 4
2. Mathematical Model of Induction Motors and Linear Induction Motors 6
2.1 Introduction 6
2.2 Coordinate Transformation 7
2.3 Induction Motors Model 7
2.4 Linear Induction Motors Model 10
2.4.1 Linear Induction Motors Model 10
2.4.2 Linear Induction Motors Model Reflecting End Effect 11
2.5 Optimal Generated Torque and Optimal Generated Thrust 14
3. Adaptive Speed Control with Friction Compensation for Induction Motors 18
3.1 Introduction 18
3.2 Problem Formulation 19
3.2.1 Dynamic Model of Induction Motors with Considering Friction 19
3.2.2 Semi-current-fed Model 21
3.3 Design Method of Virtual Desired Variables 23
3.3.1 Mechanical Loop Control 23
3.3.2 VDV-Synthesis 24
3.3.3 Realization of VDV-Synthesis 25
3.4 Adaptive Mechanism and Stability Analysis 27
3.5 PE Condition and Flux Tracking 31
3.6 Simulation 33
3.6.1 Simulation of Speed Regulation 34
3.6.2 Simulation of Speed Regulation with Load 34
3.6.3 Simulation of Speed Tracking (1) 35
3.6.4 Simulation of Speed Tracking (2) 35
3.6.5 Simulation of Smooth Step-Type Speed Tracking 36
3.7 Conclusions 36
4. Adaptive Speed Control for Linear Induction Motors 43
4.1 Introduction 43
4.2 Problem Formulation 45
4.3 Design Method of Virtual Desired Variables 47
4.3.1 Mechanical Loop Control 47
4.3.2 VDV-Synthesis 48
4.3.3 Realization of VDV-Synthesis 49
4.4 Adaptive Mechanism and Stability Analysis 50
4.5 PE Condition and Flux Tracking 52
4.6 Simulation 53
4.6.1 Simulation of Speed Regulation 53
4.6.2 Simulation of Speed Regulation with Load 54
4.6.3 Simulation of Speed Tracking 54
4.6.4 Simulation of Benchmark Speed Tracking 55
4.7 Conclusions 55
5. Experimental Results 62
5.1 Introduction 62
5.2 Hardware 63
5.3 Software 63
5.4 Induction Motor Experimental Results 64
5.4.1 Experiment of Speed Regulation 64
5.4.2 Experiment of Speed Regulation with Load 64
5.4.3 Experiment of Speed Tracking (1) 65
5.4.4 Experiment of Speed Tracking (2) 65
5.4.5 Experiment of Smooth Step-Type Speed Tracking 66
5.5 Linear Induction Motor Experimental Results 66
5.5.1 Experiment of Speed Regulation (1) 66
5.5.2 Experiment of Speed Tracking (1) 67
5.5.3 Experiment of Triangular Command(1) 67
5.5.4 Experiment of Speed Regulation (2) 67
5.5.5 Experiment of Speed Tracking (2) 68
5.5.6 Experiment of Triangular Command (2) 68
5.5.7 Experiment of Speed Regulation (3) 68
5.5.8 Experiment of Speed Tracking (3) 68
5.5.9 Experiment of Triangular Command (3) 69
6. Conclusions 82
Bibliography 84
1 A. E. Fitzgerald, C. Kingsley, Jr. and S. D. Umans, Electric Machinery. New York: NcGraw-Hall, 1990.2 A. M. Trzynadlowski, The Field Orientation Principle in Control of Induction Motors. Boston: Kluwer Academic Publishers, 1994.3 A. Gastli, ''Compensation for the effect of joints in the secondary conductor of a linear induction motor,'' IEEE Trans. Energy Conversion, vol. 13, no. 2, pp. 111-116, 1998.4 A. M. Lee, L. C. Fu, C. Y. Tsai, and Y. C. Lin, ''Nonlinear adaptive speed and torque control of induction motors with unknown rotor resistance,'' IEEE Trans. Industrial Electronics, vol. 48, no. 2, pp. 391-401, 2001.5 B. K. Bose, Power Electronics and AC Drives. Englewood Cliffs, NJ: Prentice Hall, 1986.6 B. Kwon, K. Woo, and S. Kim, ''Finite element analysis of direct thrust-controlled linear induction motor,'' IEEE Trans. Magnetics, vol. 35, no. 3 pp. 1306-1309, 1999.7 B. Robyns, F. Berthereau, G. Cossat, L. Chevalier, F. Labrique and H. Buyse, ''A methodology to determine gains of induction motor flux observers based on a theoretical parameter sensitivity analysis,'' IEEE Trans. Power Electronics, vol. 15, no. 6, pp. 983-995, 2000.8 C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties. Academic Press, 1975.9 C. M. Liaw, C. T. Pan, and Y. C. Chen, ''An adaptive controller for current-fed induction motor,'' IEEE Trans. Aerospace and Electronic Systems, vol. 24, pp. 250-262, 1988.10 C. Canudas de Wit, H. Olsson, K. J. , and P. Lischinsky, ''A new model for control of systems with friction,'' IEEE Trans. Automatic Control, vol. 40, no. 3, pp. 419-425, 1995.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top