跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/04 02:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周舜斌
研究生(外文):Shun-Pin Chou
論文名稱:以電流式主動元件設計電壓式濾波電路
論文名稱(外文):Design of voltage-mode biquadratic filters employing active current-mode elements
指導教授:張俊明
指導教授(外文):Chun-Ming Chang
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:76
中文關鍵詞:電流傳輸器二階濾波器
外文關鍵詞:active filterscurrent conveyor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文將利用電流傳輸器作為主動元件來設計電壓式二階濾波電路,並希望能減少主動與被動元件的數目。因此,我們以第二代電流傳輸器(CCII)、雙輸出之第二代電流傳輸器作為主動元件,設計單輸入三輸出電壓式多功濾波電路;以及使用差動電壓電流傳輸器(DVCC) 為主動元件,設計單輸入三輸出電壓式多功濾波電路與三輸入單輸出電壓式萬用濾波電路。
首先,我們提出兩個以第二代電流傳輸器(CCII)為主動元件設計之單輸入三輸出電壓式多功濾波電路,可實現低通、帶通和高通訊號。第一個電路使用了兩個雙輸出之第二代電流傳輸器、三個電阻及兩個接地電容。此電路具有主、被動元件數目較少之優點及兩個接地電容,利於電路之積體化製造,諧振頻率與品質因素對於主、被動元件之靈敏度非常小,而且,不需要阻抗匹配條件。第二個電路使用了兩個單端正型第二代電流傳輸器(CCII+s) 、四個電阻及兩個電容。此電路不需要阻抗匹配條件,具有低的被動元件靈敏度,而且只使用了正型的CCII簡化了電路的結構。
其次,我們提出使用單一差動電壓電流傳輸器(DVCC),配合兩個電容及三個電阻,設計出電壓式單輸入、三輸出多功二階濾波電路。此電路具有下列之優點:僅使用單一主動元件即可同時實現低通、帶通和高通濾波信號,不需要任何阻抗匹配條件並有非常低的被動元件靈敏度。
最後,我們提出使用單一差動電壓電流傳輸器(DVCC) ,配合配合兩個電容及三個電阻,設計出電壓式三輸入、單輸出萬用二階濾波電路。此電路之優點,僅使用單一主動元件即可從同一個電路結構中實現低通、帶通、高通、帶拒和全通五種濾波信號,其諧振角頻率wo及品質因素Q可正交調整(orthogonal control)。

Abstract
In this paper, we design voltage-mode biquadratic filters using current conveyors, and have an attempt on minimizing the numbers of active and passive components in the design. For this reason, some new biquads with a single input and three outputs or three inputs and a single output are presented employing second-generation current conveyors (CCIIs), dual output CCIIs or differential voltage current conveyors (DVCCs).
Firstly, we present two voltage-mode low-pass, band-pass, and high-pass biquadratic filters with a single input and three outputs employing CCIIs. The first circuit is composed of two dual output CCIIs, two grounded capacitors, and three resistors. The presented circuit has the following advantageous features: realization of voltage-mode low-pass, band-pass, and high-pass filter responses from the same configuration; no requirement of critical component matching conditions; employment of grounded capacitors ideal for integration; low sensitivity characteristics; and simpler configuration due to the use of only two dual output CCIIs. The second circuit is composed of two plus type CCIIs, two capacitors, and four resistors. The proposed circuit has the following advantageous features: no component matching conditions; low passive sensitivities; and simpler configuration due to the use of only two plus type CCIIs.
Secondly, we propose a voltage-mode low-pass, band-pass, and high-pass biquadratic filter with a single input and three outputs employing only one DVCC, two capacitors, and three resistors. It requires no critical component matching/cancellation constraints and enjoys low passive sensitivities.
Finally, a voltage-mode low-pass, band-pass, high-pass, all-pass, and notch biquadratic filter with three inputs and a single output employing a single DVCC, two capacitors, and three resistors is proposed. It offers the following advantageous features: realization of low-pass, band-pass, high-pass, all-pass, and notch signals from the same configuration and orthogonal control of wo and Q.

目錄
第一章緒論..............................................1
第二章電流式主動元件介紹................................5
2.1 Nullor model ..........................................5
2.2 電流傳輸器(CC).........................................7
2.3 雙輸出端之電流式主動元件..............................12
2.4 差動電壓電流傳輸器(Differential Voltage Current
Conveyor) ............................................18
第三章以第二代電流傳輸器(CCII)設計單輸入三輸出二階濾波電路
..................................................23
3.1先前學者電路...................................23
3.2本章所提新電路之一.............................25
3.3本章所提新電路之二.............................33
第四章以單一差動電壓電流傳輸器設計(DVCC)設計新的濾波電路
..................................................41
4.1先前學者電路...................................42
4.2本章所提之新電路之一...........................44
4.3本章所提之新電路之二...........................52
第五章結論與未來展望...................................62
參考文獻..................................................64

參考文獻[1]B. Wilson, “Constant bandwidth voltage amplification using current conveyor”, Int. J. Electronics, 65, (5), pp. 983-988, 1988.[2]Sedra/Smith, “Microelectronic Circuits”, Third Edition, 1991.[3]H. O. Elwan and A. M. Soliman,: “Novel CMOS differential voltage current conveyor and its applications”, Circuits, Devices and Systems, IEE Proceedings, 144, (3), pp. 195 —200, 1997.[4]G. W. Roberts, and A. S. Sedra, “All current-mode frequency selective circuit”, Electronics Lett., 25, (12), pp. 759-761, 1989.[5]H. S. Mallvar,: “Electronically tunable active filters with operational transconductance amplifiers”, IEEE Trans. on Circuits and Systems, CAS-29, (5), pp. 333-336, 1982.[6]C. M. Chang,: “Novel current conveyor-based single-resistance controlled/voltage controlled oscillator employing grounded resistors and capacitors ”, Electronics Lett., 30, (3), pp. 181 —183, 1994.[7]M. Higashimura and Y. Fukui,: “Realization of impedance function using current conveyors”, Int. J. Electron., 65, (2), pp. 223-231, 1988.[8]C. M. Chang, C. S. Hwang and S. H. Tu,: “Voltage-mode notch , lowpass and bandpass filter using current-feedback amplifiers”, Electronics Lett. , 30, (24), pp. 2022-2023, 1994.[9]C. M. Chang and M. S. Lee,: “Universal voltage-mode filter with three inputs and one output using three current conveyors and one voltage follower”, Electronics Lett., 30, (25), pp. 2112 —2113, 1994.[10]D. S. Wu, H. T. Lee, Y. S. Hwang and Y. P. Wu,: “CF Abased universal filter deduced from a Mason Graph”, Int. J. Electron., 77, (6), pp. 1059- 1065, 1994.[11]S. I. Liu, and J. J. Chen,: “Realisation of analogue divider using current feedback amplifiers”, IEE Proc.-Circuits Devices Syst., 142, (1), pp. 45- 48, 1995. [12]A. M. Soliman, “Kerwin-Huelsman-Newcomb circuit using current conveyors,” Electron. Lett., vol. 30, no. 24, pp. 2019-2020, Nov. 1994.[13]R. Senani and V. K. Singh, “KHN-equivalent biquad using current conveyors,” Electron. Lett., vol. 31, no. 8, pp. 626-628, Apr. 1995.[14]W. J. Horng, J. R. Lay, C. W. Chang, and M. H. Lee, “High input impedance voltage-mode multifunction filters using plus-type CCII's,” Electron. Lett., vol. 33, no. 6, pp. 472-473, Mar. 1997.[15]C. M. Chang, “Multifunction biquadratic filters using current conveors,” IEEE: Trans. Circuits Syst. Pt-II, vol. 44, no. 11, pp. 956-958, Nov. 1997.[16]C. M. Chang and M. J. Lee, “Voltage-mode multifunction filter with single input and three outputs using two compound current conveyors,” IEEE: Trans Circuits Syst. Pt-I, vol. 46, no. 11, pp. 1364-1365, Nov. 1999.[17]C. M. Chang and M. S. Lee, “Comment: Universal voltage-mode filter with three inputs and one output using three current conveyors and one voltage follower,” Electronic Letters, 31, p. 353, 1995.[18]Ozoguz, S., and Gunes, E. O., “Universal filter with three inputs using CCII+,” Electronic Letters, 32, pp. 2134-2135, 1996.[19]Horng, J. W., Tsai, C. G., and Lee, M. H., “Novel universal voltage-mode biquad filter with three inputs and one output using only two current conveyors,” International Journal of Electronics, 80, pp. 543-546, 1996.[20]Liu, S. I. and Lee, J. L., “Voltage-mode universal filters using two current conveyors,” International Journal of Electronics, 82, pp. 145-149, 1997.[21]Horng, J. W., Lee, M. H., Cheng, H. C., and Chang, C. W., “New CCII-based voltage-mode universal biquadratic filter,” International Journal of Electronics, 82, pp. 151-155, 1997.[22]C. M. Chang and S. H. Tu, “Universal voltage-mode filter with four inputs and one output using two CCII+s,” International Journal of Electronics, 86, pp. 305-309, 1999.[23]T. B. Leonard, RC-active circuits theory and design, Prentice-Hall, Inv., Englewood Cliffs, New Jesey 07632, USA, 1980.[24]K. C. Smith and A. Sedra, ‘‘The current conveyor-a new circuit building block,’’ IEEE Proc, vol. 56, pp. 1368-1369, 1968.[25]J. A. Svoboda, “Comparison of RC op.amp. and RC current conveyor filters,” Int. J. Electron., 76, (4), pp. 615-626, 1994.[26]A. Sedra and K. C. Smith, ‘‘A second-generation current conveyor and its applications,’’ IEEE Trans. on Circuit Theory CAS-17, pp. 132-134, 1970.[27]O. Oliaei and J. Porte, “Compound current conveyor(CCII+ and CCII-),” Electronics Letters, Vol. 33, No. 4, pp. 253-254, 1997.[28]A. S. Sedra, G. W. Roberts, and F. Gohh, ‘‘The current conveyor : history, progress and new result,’’ IEE Proc. G, vol. 137, no. 2, pp. 78- 87, 1990.[29]H. O. Elwan and A. M. Soliman, “Novel CMOS differential voltage current conveyor and its applications”, Circuits, Devices and Systems, IEE Proceedings, 144, (3), pp. 195 —200, 1997.[30]R. Naqshbendi and U. Klein, “High input impedanca current conveyor filters,” Int. J. Electron., vol. 55, pp. 499-500, 1983.[31]M. Bhushan and R. Newcomb, “Grounding of capacitors in integrated circuit,” Electronics Letters, vol. 3, no. 4, pp. 148-149, 1967.[32]B. Wilson, ‘‘Recent developments in current conveyors and current-mode circuits,’’ Proc. Inst. Elect. Eng., pt. G, vol. 137, no. 2, pp. 63-77, Apr. 1990.[33]Jiun-Wei Horng, “High-Input Impedance Voltage-Mode Universal Biquadratic Filter Using Three Plus-Type CCIIs,” IEEE: Trans. Circuits Syst. Pt-II, vol. 48, no. 10, pp. 996-997, Oct. 2001.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top