跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張宏淵
研究生(外文):Hong-Yuan Zhang
論文名稱:低頻壓電陶瓷之驅動控制電路設計研究
論文名稱(外文):Circuitry Design of Low Frequency Driving Controller for Piezoelectric Actuators
指導教授:丁鏞
指導教授(外文):Yung Ting
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:120
中文關鍵詞:延遲電路共振式換流器壓電陶瓷反饋控制
外文關鍵詞:delay circuitresonate inverterfeedback contr
相關次數:
  • 被引用被引用:6
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出適於低頻壓電陶瓷材料之單相共振式換流器驅動控制架構,以因應在低頻場合中,各類型壓電陶瓷材料廣泛之驅動應用。於實際設計分析中,特別針對延遲電路、濾波諧振電路及反饋控制電路部份予以探討。延遲電路之設計直接影響功率級電路是否能在較佳的情況下切換不致燒毀,而延遲的時間通常僅介於微秒至奈秒(micro ~ nano)等級,在設計時往往會出現一些不必要的雜訊及飄移現象,而這些脈衝干擾(glitch)在高頻時幾乎對系統不會有任何影響,但在低頻的設計中,這些訊號將造成系統的誤判而造成功率級電路的燒毀,故設計時更需謹慎。由磁學分析式(法拉第感應定律)可清楚的看出,欲使用換流器架構設計出一低頻之驅動電路需要取得較大的濾波電感、電容,以獲得較佳之諧振波輸出。且工作頻率愈低,則所需之感抗值愈高。然而高容抗值之電容器並無法自行研製,且現有電容、電感器之容抗、感抗值往往無法滿足,故為設計低頻之驅動架構匹配機構之機械共振頻率,以達到良好之驅動效率,故透過濾波電感值之規劃及設計分析方可達到期望之諧振輸出。但由於本研究所驅動機構之致動器材料為壓電陶瓷,而壓電材料受熱、電、力等效應後所產生之參數變化、物理特性不明確等因素,以致諧振波輸出之驅動效率不佳,故另加以一反饋控制電路設計以期達到更高之輸出效率。本研究並以壓電陶瓷所致動之振動盤(vibratory parts feeder)、抖動抑制器(damper)、壓電式蜂鳴器(piezo buzzer element)及振動樑式陀螺儀(gyroscope)為例,驗證其效果。經實驗證明,本文所提出之低頻壓電陶瓷共振式換流驅動控制架構,確實具有良好之驅動響應。
A driver design of single-phase resonant inverter is proposed to support various piezoelectric actuators operating at low frequency. In practice, the delay circuit, the harmonic filter circuitry, and the feedback control circuitry are investigated. The delay circuit is for the purpose of the power MOSFET switching under good condition and avoiding it burned out. Since the delay time is around microsecond to nanosecond, it often produces noise and glitch effect. This defect does not affect the system obviously at high frequency, but it may generate inaccurate signals so as to burn out the power MOSFET. Thus, comprehensive design of the delay circuit is important. By means of the Faraday’s law, a low-frequency driver based on the inverter structure needs large inductance and capacitance to obtain better resonant wave output. The capacitor of high impedance is unable to produce easily, and the available inductor and capacitor with high impedance is still not satisfactory for the driver. Hence, to achieve good driving performance appropriate design and manufacture of the inductor is the fundamental process to provide expected resonant wave output. Because the piezoelectric ceramics is vulnerable to the change of heat, electricity, and stress, etc., the output function of the actuator degrades. Therefore, a feedback control design for the inverter is developed to gain better efficiency.
In this study, vibratory parts feeder, damper, piezo buzzer element, and gyroscope driven by the piezoelectric actuators are selected as the examples to employ with the developed low-frequency driving circuitry, and then to verify the performance with practical experiments.
Key word: resonant inverter, delay circuit, feedback control, piezoelectric actuator
摘要…………………………………………………………………….Ⅰ
英文摘要…………………………. ……………………………………Ⅱ
誌謝…………………………. …………………………………………Ⅲ
目錄…………………………. …………………………………………Ⅳ
圖目錄…………………………. …………………………. …………..Ⅶ
表目錄…………………………. ……………………………………...
第一章 緒論………………………………...………….………..………1
1.1 前言………………………………………….………..………...1
1.2 研究動機……………………………….…………….…………4
1.3 研究目的與本文架構……………………….………..………...5
第二章 壓電陶瓷致動器應用分析………..……………………………6
2.1 壓電材料的基本特性………….……………………………….6
2.2 振動盤運動模式簡介………………..…………………………8
2.3 抖動抑制器運動模式簡介……………….…………………11
2.3.1 行進波之形成…..……….………..…………………….11
2.3.2 定子表面質點之橢圓運動……..……………………...12
2.4 壓電式蜂鳴器簡介………………………...………………….15
2.5 振動樑式陀螺儀之應用簡介……………...………………….17
第三章 驅動器之電路設計理論分析………………...……………….19
3.1 電力電子技術………………..………………………………..19
3.1.1 儲能原理之切換電路………….….…………………...19
3.2 切換式電源設計分析……………………………..…………..20
3.2.1 切換式電源穩壓器與線性電源穩壓器的比較……….20
3.2.2 切換式電源穩壓器的分類………..…………….……24
3.2.3 PWM功率轉換器電路………………………………...24
3.2.4 諧振(共振)式電力轉換器電路……………………….27
3.2.5 切換式電源之規劃要素……………..………………..29
3.3 降壓型(BUCK)功率轉換器…………….……………………..29
3.3.1 BUCK轉換器電路之C.C.M.分析……..……………30
3.3.2 BUCK轉換器電路之D.C.M.分析……………………35
3.4 RLC串聯共振原理………………………………….………...38
3.4.1 欠阻尼(Undamped)之串聯共振電路…………………40
3.4.2 含並聯電容負載之串聯共振電路…….……………...41
3.4.3 串聯共振電路之頻率特性…………….……………...42
3.5 濾波、諧振電路分析……………………………….………….43
3.5.1 濾波、諧振電感器設計值分析………………………..44
3.5.2 電感器設計規劃………………………………………45
3.6 濾波、諧振電路量測……………………………….………….47
第四章 驅動器之設計建立……………….……………..………….…48
4.1 驅動器之架構…………………………………….….………..48
4.2 PWM信號電路…………………………………..……………49
4.3 分相電路…………………..………………………….……...50
4.4 延遲電路…………………………...………………..………...51
4.4.1 類比單向式延遲電路………………………..…….…..52
4.4.2 類比雙向式延遲電路.…………………………………52
4.4.3 類比-數位式延遲電路………….……………………...53
4.4.4 數位式延遲電路……………………………………….54
4.5 信號放大電路…..………………………………..….……….54
4.6 直流電源組………………………………………..….……….55
4.7 降壓型轉換器….………………………………..….………...56
4.8 MOSFET全橋電路.……………………………..….………...56
4.9 諧振電路.………………………………………..….………...58
4.10 反饋電路設計.………………………………………..……..70
4.10.1 PWM邏輯驅動級之反饋………………..……….…..70
4.10.2 切換電源供應級之反饋…………………..………….74
4.11 整合分析.………………….………………………..….……75
第五章 實驗結果與分析………………………………………….…...77
5.1 PWM信號電路………………….……………………….……77
5.2 分相電路………………………………………………………79
5.3 延遲電路………………………………………….…….……80
5.4 信號放大電路…………………….……………….…..………82
5.5 MOSFET全橋電路……………………………..……..……....82
5.6 諧振電路………...………………….……………….…..…….83
5.6.1 振動盤之驅動應用…………………………..………...83
5.6.2 振動盤之反饋驅動應用……………………..………...85
5.6.3 抖動抑制器之驅動應用……………………..……..….86
5.6.4 抖動抑制器之反饋驅動應用………………..……..….88
5.6.5 壓電式蜂鳴器之驅動應用…………………..………...89
5.6.6 壓電式蜂鳴器之反饋驅動應用……………..………...91
5.6.7 振動樑式陀螺儀之驅動應用……………..…………...92
5.6.8 振動樑式陀螺儀之反饋驅動應用…………..………...95
5.7 設計討論………...………………….……………….…..…….98
第六章 結論與未來展望………………………………….…….……..99
6.1 結論………………………………………………..….……….99
6.2 未來展望……………………………………………….…….100
參考文獻………………………………………………………………102
簡歷……………………………………………………………………108
[1] M. Kurokawa, Y. Konishi, M. Nakaoka, “Evaluations of Voltage-Source Soft-Switching Inverter with Single Auxiliary Resonant Snubber”, Electric Power Applications, IEE Proceedings- , Volume: 148 Issue: 2 , Page(s): 207 —213, March 2001.[2] C. M. Wang, G. C. Hsieh, “A Series-Resonant DC/AC Inverter for Impedance-Load Drives”, Power Electronics, IEEE Transactions on , Volume: 16 Issue: 3 , Page(s): 325 —335, May 2001.[3] H. Ishikawa, Y. Murai, “A Novel Soft-Switched PWM Current Source Inverter with Voltage Clamped Circuit”, Power Electronics, IEEE Transactions on, Volume: 15 Issue: 6, Page(s): 1081 —1087, Nov. 2000.[4] Unitrode Switching Regulated Power Supply Design Seminar Manual, Unitrode Corporation, 1988.[5] N. Mohan, T. M. Undeland and W. P. Robbins, “Power electronics : converters, applications, and design”, John Willy & Sons : New York. 1989.[6] S. Okudaira, K. Matsuse, “A new quasi-resonant inverter with two-way short-circuit switch across a resonant capacitor”, IEEE Power Conversion Conference, Volume: 3, Page(s): 1496 —1501, 2002.[7] H. Shirai, T. Matsushige, M. Ishitobi, T. Myoui, M. Nakaoka,; D. Bessyo, H. Omori, “Pulse pattern modulated soft commutation inverter-type AC-DC power converter with harmonic current components reduction in utility power side”, IEEE Power Conversion Conference, Volume: 3 , Page(s): 1479 —1483, 2002.[8] H. Tanaka, H. Sadakata, Y. L. Feng, E. Hiraki, M. Nakaoka, “Electromagnetic induction eddy current-based far infrared rays radiant heater using high frequency ZVS-PWM inverter”, IEEE Power Electronics Specialists Conference, 32nd Annual, Page(s): 108 -113 vol. 1, 2001.[9] M.C. Cavalcanti, E. R. C. da Silva, C. B. Jacobina, “Techniques for minimizing losses and the output current ripple in quasi-resonant inverters”, IEEE Power Electronics Specialists Conference, 32nd Annual , Page(s): 164 -169 vol. 1, 2001.[10] F. S. Hamdad, A. K. S. Bhat, “A three-phase single-stage AC/DC boost integrated parallel resonant converter”, IEEE Power Conversion Conference, Page(s): 486 -491 vol.2, 2002.[11] B. Yang, R. Chen, F. C. Lee, “Integrated magnetic for LLC resonant converter”, IEEE Applied Power Electronics Conference and Exposition, Page(s): 346 -351 vol.1, 2002.[12] C. Chakraborty, M. Ishida, Y. Hori, “Novel half-bridge resonant converter topology realized by adjusting transformer parameters”, IEEE Transactions on Industrial Electronics, Volume: 49 Issue: 1, Feb. Page(s): 197 —205, 2002.[13] B. Yang, F. C. Lee, A. J. Zhang, G. Huang, “LLC resonant converter for front end DC/DC conversion”, IEEE Applied Power Electronics Conference and Exposition, Page(s): 1108 -1112 vol.2, 2002.[14] Y. P. B. Yeung, K. W. E. Cheng, S. L. Ho, D. Sutanto, “Generalised analysis of switched-capacitor step-down quasi-resonant converter”, IEEE Electronics Letters , Volume: 38 Issue: 6 , 14 March, Page(s): 263 —264, 2002.[15] H. Oishi, H. Okada, K. Ishizaka, R. Itoh, “Single-phase soft-switched current-source inverter for utility interactive photovoltaic power generation system”, IEEE Power Conversion Conference, Page(s): 632 -637 vol.2, 2002.[16] R. Itoh, K. Ishizaka, H. Oishi, H. Okada, “Soft-switched current-source inverter for single-phase utility interfaces”, IEEE Electronics Letters , Volume: 37 Issue: 20 , 27 Sept. Page(s): 1208 —1209, 2001.[17] R. Gurunathan, A. K. S. Bhat, “Zero voltage switching DC link single-phase pulse width modulated voltage source inverter”, IEEE Applied Power Electronics Conference and Exposition, vol.1, Page(s): 519 —524, 2002.[18] M. Yamamoto, S. Sato, E. Hiraki, M. Nakaoka, “Auxiliary active resonant commutated snubber-assisted 3-level 3-phase voltage source soft-switching inverter”, IEEE Power Conversion Conference, vol.3, Page(s): 1245 —1250, 2002.[19] F. T. Wakabayashi, C. A. Canesin, “A high efficiency HPF-ZCS-PWM Sepic for electronic ballast with multiple tubular fluorescent lamps”, IEEE Applied Power Electronics Conference and Exposition, vol.2, Page(s): 924 —930, 2002.[20] M. A. Al, M. Nakamura, S. Sato, M. Nakaoka, “High frequency link transformer secondary side control DC-DC power converter”, IEEE Power Conversion Conference, vol.2, Page(s): 593 —596, 2002.[21] J. Sutanto, Syafrudin, “Analysis of DC-DC converter based on single phase full bridge inverter operating in zero voltage switching”, IEEE International Conference on Power Electronics and Drive Systems, 4th , Volume: 2 , 22-25 Oct 2001 Page(s): 432 —436, 2001.[22] S. M. R. Sadriyeh, M. R. Zolghadri, J. Mahdavi, “Application of a current source inverter for a linear piezoelectric step motor drive”, IEEE International Conference on Power Electronics and Drive Systems, 4th , Volume: 2 , 22-25 Oct, Page(s): 892 —897, 2001.[23] S. B. Yaakov, E. Rozanov, T. Wasserman, T. Rafaeli, L. Shiv, G. Ivensky, “A resonant driver for a piezoelectric motor with single transistor direction switches”, IEEE Applied Power Electronics Conference and Exposition, vol.2, Page(s): 1037 —1043, 2000.[24] F. J. Lin, R. Y. Duan, R. J. Wai, C. M. Hong, “LLCC resonant inverter for piezoelectric ultrasonic motor drive”, IEE Proceedings-Electric Power Applications, Volume: 146 Issue: 5 , Page(s): 479 —487, 1999.[25] F. J. Lin, R. Y. Duan, H. H. Lin, “An ultrasonic motor drive using LLCC resonant technique”, IEEE Power Electronics Specialists Conference,. 30th Annual , vol.2, Page(s): 947 —952, 1999.[26] S. I. Furuya, T. Maruhashi, Y. Izuno, M. Nakaoka, “Load-adaptive frequency tracking control implementation of two-phase resonant inverter for ultrasonic motor”, IEEE Transactions on Power Electronics, Volume: 7 Issue: 3 , July, Page(s): 542 —550, 1992.[27] 楊庭瑋, “壓電驅動型振動式輸送裝置之設計與研究”, 國立台灣大學/機械工程學系, 碩士論文, 1995.[28] 林樹鑫, “超音波馬達驅動器之設計與應用”, 國立台灣科技大學/機械工程技術研究所, 碩士論文, 1996.[29] 陳明泰, “以單晶片為控制基礎的薄盤式壓電致動平台研製”, 國立清華大學/工程與系統科學系, 碩士論文, 1998[30] 王信雄, “切換式電源供應器講義”, 中原大學/ 電機工程學系, 2001.[31] G. C. Chryssis, “HIGH-FREQUENCY SWITCHING POWER SUPPLIES:Theory & Design 2/e”: McGraw-Hill, 1984.[32] F. J. Lin, R. J. Wai, “Drive and Intelligent Control of Ultrasonic Motor” , 1999.[33] 曾喜君, “壓電陶瓷馬達驅動控制之設計與分析”, 私立中原大學/機械工程學系, 碩士論文, 2000.[34] R. Prieto, J. A. Cobos, O. Garda, P. Alou, J. Uceda, “Using Parallel Windings in Planar Magnetic Components”, Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual , Volume: 4 , Page(s): 2055 —2060, 2001.[35] 古頤榛, “數位邏輯”, □峰資訊, 1998.[36] R. C. Dodson, P. D. Evans, H. T. Yazdi, and S. C. Harley, “Compensating for Dead Time Degradation of PWM Inverter Waveforms,” IEE PROCEEDINGS, Vol.137, Pt.B, NO.2, pp.73-81, MARCH(1990)[37] Y. Murai, A. Watanabe, and H. Iwasaki, “Waveform Distortion and Correction Circuit for PWM Inverters with Switching Lag-times,” IEEE Trans. Ind. Appli., Vol. IA-23, NO. 5, pp. 881-886, September/October, 1987.[38] 豬飼國夫,高敏雄: “最新74系列IC規格表 “: 全華科技圖書公司,1995.[39] HP, 4294A Precision Impedance Analyzer Operation Manual[40] Y. Ting, et al., Design and Analysis of Speed Control for Piezoelectric Ceramic Motor. 17th National Conference on Mechanical Engineering, The Chinese Society of Mechanical Engineer, pp. 101-108, Dec, 2000.[41] F. J. Lin; R. Y. Duan; J. C. Yu, “An ultrasonic motor drive using a current-source parallel-resonant inverter with energy feedback”, IEEE Transactions on Power Electronics, Volume: 14 Issue: 1 , Jan. Page(s): 31 —42, 1999.[42] Y. Izuno, M. Nakaoka, “High performance and high precision ultrasonic motor-actuated positioning servo drive system using improved fuzzy-reasoning controller”, IEEE Power Electronics Specialists Conference, 25th Annual, Page(s): 1269 —1274, vol.2, 1994.[43] HP, 54645D Mixed-Signal Oscilloscope User and Service Guide[44] 施敏升, “壓電致動器及感測器之分析與研究”, 私立中原大學/機械工程學系, 碩士論文, 2002.[45] 張永欣, “梁式陀螺儀之研製與測試分析”, 臺灣大學/應用力學研究所, 碩士論文, 2000.[46] 黃金定、孫宗瀛,”常用線性IC資料手冊:增定版”:全華科技圖書公司, 1996.[47] 丁鏞, “低頻驅動控制電路設計研究”, 中華民國自動控制研討會, LP027, 2002.[48] 陳國威, “數位驅動電路設計應用於壓電陶瓷馬達之研究”, 中華民國自動控制研討會, LP052, 2002.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top