跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 06:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐健力
研究生(外文):Cheng-Li Hsu
論文名稱:奈米流體之熱傳效能分析
論文名稱(外文):An Analysis of the Heat Transfer Performance of Nanofluids
指導教授:許政行許政行引用關係
指導教授(外文):Cheng-Hsing Hsu
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:46
中文關鍵詞:奈米流體那左數奈米粒子倍力數
外文關鍵詞:Nusselt numbernanofluidsnanocrystallinePeclet number
相關次數:
  • 被引用被引用:6
  • 點閱點閱:482
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:1
在工業應用上,發展具有能量效益(Energy-Efficient)的熱傳流體,一直存在著熱傳效能偏低的問題。為了克服這個限制,工業界發展出一套新的技術,那就是在液體,例如水或油裡,加入懸浮的結晶奈米粒子(Suspending Nanocrystalline Particles),在液體中加入的極小奈米粒子改變了液體原本的熱傳性質與熱傳效能,這顯示了此種液體在增加熱傳方面具備了很高的潛力,這種液體就是我們現在所說的「奈米流體」
(Nanofluids)。在本篇論文中,我們將分析奈米流體的熱傳效能,並探討幾個影響熱傳效能的因素,例如奈米粒子的體積比率(Volume Fraction)、外表(Shape)、尺寸(Size)及性質(Properties),以及推導出在等溫壁及等熱通量的流場中,考慮軸向和徑向熱傳及忽略軸向熱傳共四個不同的條件下,預測奈米流體熱傳效能的基礎方程式。我們可以發現奈米流體的熱傳表現之所以會比一般流體好的原因,不只是因為它的高熱傳係數,奈米粒子無規則的運動及擴散效應也是增加奈米流體熱傳效能的原因之一,我們可由Peclet number(Pe)來描述這些因素的影響。由Nu對Pe的關係圖可以得知,若Pe愈大則Nu隨著變大,也就是說流體的Pe愈大熱傳效能也愈好。
Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids required in many industrial applications. To overcome this limitation, a new class of heat transfer fluids is being developed by suspending nanocrystalline particles in liquids such as water or oil. The resulting “nanofluids” possess extremely high thermal conductivities compared to the liquids without dispersed nanocrystalline particles. In this paper, we will analysis the performance of the nanofluids, and research some factors that affect the performance of the nanofluids, for example, the volume fraction、size、shape、properties etc. We also introduce the fundamental equation of 4 individual situations that can predict the heat transfer performance of the nanofluids, including with axial and radial heat transfer and without axial heat transfer. We can find that the performance of the nanofluids is better than that of the normal fluids, not only because it’s high thermal coefficient but also because the random movement and dispersion of the nanocrystalline. We can use the Peclet number to describe the affect of these factors and find that Nusselt number is increasing with Peclet number, that is, the higher the Peclet number of the nanofluids is the better the performance of heat transfer will be.
目 錄
中 文 摘 要 I
英 文 摘 要 II
目 錄 IV
符 號 註 釋 V

第一章闡述本文之研究動機、目的、背景
及相關文獻之回顧 1
1-1 研究背景與目的 1
1-2 文獻回顧 4
第二章一般預測及測量熱傳係數的方法 7
2-1 一般用來預測熱傳係數的方法 8
2-2 暫態熱金屬線法 14
2-3 平行金屬板法 16
第三章理論分析 20
第四章結果與討論 34
第五章結論及未來的展望 37
參考文獻1.C.Maxewll.A Treatise on Electricity and Magnetism,2nd ed (Oxford University Press, Cambridge, 1904), pp.435-441.2.R.L.Hamilton and O.K.Crosser, I&EC Fundamental 1,187(1962).3.Liu, K.V., Choi, U.S., K.E,, 1988. Measurements of pressure drop and heat transfer in turbulent pipe flows of particulate slurries. Argonne National Laboratory Report, ANL-88-15.4.Ahuja, A.S., 1975. Augmentation of heat transfer in laminar flow of polystyrene suspensions. J.Appl.Phys.46, 3408-3425.5.Wang. W., Xu. X., Choi. U.S.U. Thermal Conductivity of Nanoparticle-Fluid Mixture. J. of Thermophysics Heat Transfer. Vol.13, No.4,19996.Choi. U.S., 1995. Enhancing thermal conductivity of fluids with nanoparticles. ASME FED 231, 99-103.7.Eastman, J.A., Choi, U.S., Li, S., Thompson, L.J., Lee, S., 1997. Enhanced thermal conductivity through t development of nanofluids. In: Komarneni, S., Parker, J.C., Wollenberger, H.J. (Eds.), Nanophase and Nanocomposite Materials II. MRS, Pittsburg, PA, p p3-11.8.S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: D.A. Siginer, H.P. Wang, (Eds.), Developments and Applications of Non-Newtonian Flows, ASME, New York, FED-Vol. 231/MD-Vol. 66, 1995, pp.99- 105.9.J.A.Eastman, U.S. Choi, S. Li, G.Soyez, L.J. Thompson, R.J, Di Melfi, Novel thermal properties of nanostructured materials, Mater. Sci. Forum 312- 314(1999) 629-634.10.S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat Transfer 121 (1999) 280- 289.11.Wakeham, W.A., Nagashime, Sengers, J.V., 1991. Measurement of the Transport Properties of Fluids. Blackwell, Oxford.12.Masuda, H., Ebata, A., Teramae, K., Hishinuma, N., 1993. Alternation of thermal conductivity and viscosity of liquid by dispersion ultra-fine particles (dispersion of and ultrafine particles). Netsu Bussei (Japan), 4(4), 227-233. 13.Challoner, A.R., and Powell, R.W., Thermal Conductivity of Liquids: New Determinations for Seven Liquids and Appraisal of Existing Values, Proceedings of the Royal Society of London, Series A, V.238 , No.1212, 1956, pp.90-106.14.Incropera, F.P, and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, 4th ed., Wiley, New York, 1996, pp.445,844,846.15.D.A. Nield, A. Bejan, Convection in Porous Media, 2nd ed., Springer, Berlin, 1952.16.D.A. Drew, S.L. Passman, Theory of Multicomponent Fluids, Springer, Berlin, 1999.17.H.C. Brinkman, The Viscosity of concentrated suspensions and solutions, J. Chemistry Physics 20 (1952) 571-581.18.N. Zuber, On the dispersed two-phase flow in the laminar flow regime, Chemical Engineering Science 19 (1964) 897-917.19.Y. Xuan, Q. Li, Experimental research on the viscosity of nanofluids, Report of Nanjing University of Science and Technology (in Chinese), 1999.20.S. Lee. S.U.S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. of Heat Transfer 121 (1999) 280-289.21.Y. Xuan. Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow 21 (2000), 158-164.22.F. J. Wasp, Solid-Liquid Slurry Pipeline Transportation, Trans. Tech, Berlin, 1977.23.P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman., Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. of Heat and Mass Transfer 45 (2002) 855-863.24.C.W. Sohn, M.M. Chen, Microconvective thermal conductivity in disperse two-phase mixture as observed in a low velocity couette flow experiment, J. of Heat Transfer 103 (1981) 47-51.25.Taylor, G.I., 1953. Dispersion of soluble matter in solvent flowing through a tube. Proc. R. Soc. (London) A 219, 186-203.26.Beckman, L.V., Law, V.J., Bailey, R.V., von Rosenberg, D.U., 1990. Axial dispersion for turbulent flow with a large radial heat flux. AICHE J. 36, 598-604.27.H.S. Carslaw and J.C. Jaeger, Conduction of Heat in solids, 2nd ed., Clarendon, 1959, pp.199-203.28.Dankwerts, P.V., 1953. Continuous flow systems, distribution of resistance times. Chem. Eng. Sci. 2,1-10
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top