|
參考文獻1.Eshleman, R. L., and Eubanks, R. A., “On the Critical Speeds of a Continuous Shaft-Disk System”, ASME Journal of Engineering for Industry, November, pp. 645-652, 1967.2.Eshleman, R. L., and Eubanks, R. A., “On the Critical Speeds of a Continuous Rotors”, ASME Journal of Engineering for Industry, Vol. 91, pp. 1180-1188, 1969.3.Lee, C. W., Katz, R., Ulsoy, A. G., and Scott, R. A., “Modal Analysis of a Distributed Parameter Rotating Shaft”, Journal of Sound and Vibration, 122(1), pp. 119-130, 1988.4.Prohl, M. A., “A General Method for Calculating Critical Speeds of Flexible Rotors”, Journal of Applied Mechanics, Trans ASME, 1945, 12(3):142~148.5.Myklestad, N. O., “A New Method for Calculating Natural Modes of Uncoupled Bending Vibration of Airplane Wings and Other Types of Beams”, Journal of Aero Sci, 1994, 11:153~162.6.Holzer, H., “Die Berechnung der Drehschwingungen”, Julius Springer, 1921, 25.7.Pestel, E. C., Leckie, F. A., “Matrix Methods in Elasto Mechanics”, McGraw-Hill, 1963:51~213.8.Prohl, M. A., “A General Method for Calculating Critical Speeds of Flexible Rotors”, ASME Journal of Applied Mechanics, Vol, 67, pp. A-142-A-148, 1945.9.Lund, J. W., “Stability and Damped Critical Speeds of a Flexible Rotors in Fluid-Film Bearings”, ASME Journal of Engineering for Industry, Vol. 96, pp. 509-516, 1974.10.Bansal, P. N., and Kirk, R. G., “Stability and Damped Critical Speeds of Rotor-Bearing System”, ASME Journal of Engineering for Industry, Vol. 97, pp. 1325-1332, 1975.11.Ruhl, R. L. and Booker, J. F., “A finite element models for distributed parameter turborotor systems”, ASME J. Engineering for Industry, Feb., pp. 126-132, 1972.12.Nelson, H. D. and Mcvaugh, J. M., “The dynamics of rotor-bearing systems using finite elements”, ASME J. Engineering for Industry, 98(2), May, pp. 593-600, 1976.13.Zorzi, E. S. and Nelson, H. D., “Finite element simulation of rotor-bearing systems with internal damping”, ASME J. Engineering for Power, Jan., pp. 71-76, 1977.14.Zorzi, E. S. and Nelson, H. D., “The dynamics of rotor-bearing systems with axial toque – a finite element approach”, ASME J. Mechanical Design, 102, Jan., pp. 158-161, 1908.15.Nelson, H. D., “A finite rotating shaft element using Timoshenko beam theory”, ASME J. Mechanical Design, 102, pp. 793-803, 1980.16.Greenhill, L. M., Bickford, W. B., and Nelson, H. D., “A conical beam finite element for rotor dynamic analysis”, ASME J. Vib. Acoustics, Stress, Reliability in Design, 107, pp. 421-430, Oct., 1985.17. zg ven, H. and zkan, L. Z., “Whirl speeds and unbalance response of multi-bearing rotors using finite elements”, ASME J. Vib. Acoustics, Stress, and Reliability in Design, 106, pp. 72 – 79, 1984.18.Adams, M. L., “Nonlinear Dynamics of Flexible Multi-Bearing Rotors”, Journal of Sound and Vibration ,Vol. 71, pp. 129-144, 1980.19.Jeffcott H H. The Lateral Vibration of Loaded Shafts in the Neighborhood of a Whirling Speed the Effect of Want of Balance. Phil. mag., 1919,37.20.Kang, Y., Shih, Y. P. and Lee, A. C., “Inverstigation on the Steady-state Responses of Asymmetric Rotors”, ASME J. Vib. Acoustics, 114(April). pp. 144-208, 1892.21.Genta, G., “Whirling of Unsymmetrical Rotors:A Finite Element Approach Based on Complex Coordinates”, Journal of Sound and Vibration, 124(1), pp. 27-53, 1988.22.Rieger, N. F., “A Comprehensive guide to computer programs for analysis rotor systems”, Machine design, 22, Jan., pp. 89-95, 1976.23.Firoozian, R. and Stanway, R., “Design and application of a finite element package for modelling turbomachinery vibrations”, J. Sound and Vibration, 134, pp. 115-137, 1989.24.Reddy, V. R. and Sharan, A. M., “The finite element modeled design of lathe spindles: the static and dynamic analyses”, Int. J. Vib. Acoust. Stress Reliabil. Des., 109, pp. 407-415, 1987.25.Wang, W. R. and Chang, C. N., “Dynamic analysis and design of a machine tool spindle-bearing system”, Int. J. Vib. Aeoust., 116, pp. 280-285, 1994.26.Choi, J. K. and Lee, D. G., “Characteristics of a spindle bearing system with a gear located on the bearing span”, Int. J. Mach. Tools Manufact., 37, pp. 171-181, 1997.27.Lin, Y. Cheng, L. and Huang, T. P., “Optimal design of complex flexible rotor-support systems using minimum strain energy under multi-constraint conditions,” Journal of Sound and Vibration, 215(5), pp. 1121-1134, 1998.28.Aini, R., Rahnejat, H. and GOHAR, R., “A five degrees of freedom analysis of vibrations in precision spindles”, Int. J. Mach. Tools Manufact., 30, pp. 1-18, 1990.29.Al-Shareef, K. J. H. and Brandon, J. A., “On the effects of variations in the design parameters on the dynamic performance of machine tool spindle-bearing systems”, Int. J. Mach. Tools Manufact., 30, pp. 431-445, 1990.30.Brandon, J. A. and Al-Shareef, K. J. H., “On the validity of several common assumption in the design of machine tool spindle-bearing systems”, Int. J. Mach. Tools Manufact., 31, pp. 235-248, 1991.31.Conry, T. F., Goglia, P. R., and Cusano, C., “A minimum strain energy approach for obtaining optimal unbalance distribution in flexible rotors,” Journal of Mechanical Design, 104, pp. 875-880, 1982.32.Barrett, L. E., Gunter, E. J., and Allaire, P. E., “Optimum bearing and support damping for unbalance and stability of rotating machinery,” Journal of Engineering for Power, 100(1), pp. 89-94, 1978.33.Brandon, J. A. and Al-Shareef, K. J. H., “Optimization strategies for machine tool spindle-bearing systems: a critical review”, J. Eng. Ind., 114, pp. 244-253, 1992.34.Kang, Y., Chen, H. C., and Liu, J. J., 1995, "Dynamic Analysis of Rotor-Bearing System Using ANSYS," ANSYS Users Conference, Tau-Yuan, Taiwan.35.Kang, Y., Chang, Y. P., Tasi, J.-W., Tang, P.-H, and Chang, Y.-F, 2000, “An Investigation in Stiffness Effects on Dynamics of Rotor-Bearing-Foundation Systems,” Journal of Sound and Vibration, 231(2), pp.343-374.36.Kang, Y., Chang, Y.P.,Tsai,J.W., Chen, S.C.,Yang, L.K., 2001, “Integrated “CAE” Strategies for the Design of Machine Tool Spindle-Bearing-Systems,” Finite Element in Analysis and Design 37, pp.485-511.37.康淵, 2002, “馬達臨界轉速分析及測試方法之建立結案報告”, 2月, 東元電機股份有限公司.
|