跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/13 03:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張耀文
研究生(外文):Yao-Wen Chang
論文名稱:根管治療後正中門齒補綴之應力分析
論文名稱(外文):Stress Analysis of Post-Endodontic Restoration in Central Incisor
指導教授:陳文斌陳文斌引用關係
指導教授(外文):Weng-Pin Chang
學位類別:碩士
校院名稱:中原大學
系所名稱:醫工所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:76
中文關鍵詞:有限元素法補綴根管治療應力斷裂門齒
外文關鍵詞:Finite element methodstressendodonticsincisorrestorationfracture
相關次數:
  • 被引用被引用:2
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
根管治療後的牙齒較容易發生牙冠-牙根的斷裂型態。雖然目前補綴根管治療後牙齒的方式很多,但沒有一個標準的規範。本研究主要利用有限元素法模擬各式Class I補綴之正中上顎門齒的三維有限元素模型,探討補綴材料、補綴深度,在不同負載情形下對牙本質應力分佈的影響,根據結果,再更進一步利用窩洞幾何形狀設計的方式,探討補綴幾何形狀對牙本質內應力分佈改變的影響,及引導斷裂的可能性。結果顯示,以汞齊合金或複合樹脂為材料之一般Class I補綴,當補綴深度超過齒頸部時,於齒頸部深度的牙本質內會產生應力集中的現象,可能導致未來發生牙冠-牙根斷裂的機率上升;因此,對於臨床上之門齒的一般Class I補綴,建議以較硬的材料僅補至舌窩以下3mm,可能可以防止產生牙冠-牙根斷裂之斷裂型態。另外,若以汞齊合金或複合樹脂為材料之特殊幾何形狀進行較淺層的補綴,可降低齒頸部的高應力集中現象,並增加牙冠以上牙本質內的應力集中情形,可能具有引導斷裂的功能。凡以玻璃水門汀為補綴材料之門齒,在應力分布的表現上皆與根管治療後尚未補綴之門齒相同沒有差異。
Crown-Root fracture occurs more frequently in teeth that received endodontic treatment. Although various methods of restoration are used, no typical rules have been brought up at present. In this study, three-dimensional finite element models were used to simulate different types of Class I restoration of maxillary central incisor. The specific aims of this study were to investigate the effects of stress distributions of an incisor restored with: 1. different materials; 2. different depths; 3. different cavity designs. The results showed that stress concentration increased at the cervical dentin when amalgam or composite resin was used in Class I restoration. This may increase the possibility of crown-root fracture in the future. Therefore, harder restorative material with less filling depth was suggested in this study for clinical practice. In addition, it may reduce the high stress concentration in the cervical portion, and increase the stress in the dentin above cementum-enamel-junction. According to these findings, guiding fracture using special restoration geometry may be possible if amalgam or composite resin is used. There is no significant stress difference in the dentin for glass ionomer restoration when compared with that of an opening incisor.
∼ 目 錄∼
摘要------------------------------------------------------------------------------- i
Abstract--------------------------------------------------------------------------- ii
謝誌------------------------------------------------------------------------------- iii
目錄------------------------------------------------------------------------------- iv
圖次------------------------------------------------------------------------------- vii
表次------------------------------------------------------------------------------- xii
第一章緒論………………………………………………………….. 1
1.1前言………………………………………………………. 1
1.2文獻回顧…………………………………………………. 2
1.2.1 基本概述…………………………………………. 2
1.2.2 根管治療……………………………………….… 2
1.2.3 根管治療後牙齒補綴的選擇………………….… 4
1.2.4 補綴材料之沿革………………………….……… 7
1.2.5 力學分析…………………………………….…… 9
1.3研究動機與目的….…………………………………..…...11
1.4研究假設………………………………..…………..…..…12
第二章基礎理論………………………………………………….…..13
2.1牙齒簡介…………………………………….…………...13
2.2有限元素法簡介……………………………….…...……15
第三章研究方法與流程…….…………………….………….………17
3.1研究流程……………………………………….….…..…17
3.2門齒輪廓之取得……………………………….….……..19
3.3完整門齒有限元素模型之建立與修正…………………20
3.4門齒Class I補綴模型之建立:一般補綴…...…………21
3.4.1實體模型之建立………………………………….21
3.4.2有限元素模型之建立………………………….…24
3.4.3前置處理(pre-processing)………………….…26
3.4.4有限元素分析與後置處理…………………….…28
3.5門齒補綴模型之建立:特殊幾何形狀…………………28
3.5.1實體模型之建立………………………………….29
3.5.2有限元素模型之建立………………………….…30
3.5.3前置處理、分析與後置處理………………….…30
3.6後置處理…………………………………………...…… 31
第四章結果……………………………………………….…………..32
4.1Class I一般補綴門齒…………………….……………...32
4.1.1 正常咬合負載下之應力分布……….……………32
4.1.2 唇側負載下之應力分布……….…………….….. 36
4.2一般補綴與特殊幾何形狀補綴之比較………….……...39
4.2.1 以汞齊合金補綴之門齒……….……………...… 39
4.2.2 以複合樹脂補綴之門齒……….……………..…. 42
4.2.3 以玻璃離子水門汀補綴之門齒……….……...… 42
4.3接觸問題…………….…. ……………………………… 44
第五章討論………………………………………………….………..46
5.1 收斂測試……………………………………….………....46
5.2 接觸問題……………………………………….………....47
5.3 補綴材料對應力分佈之影響…………………………….48
5.4 補綴深度對應力分佈之影響…………………………….50
5.5 幾何形狀對應力分佈之影響……………………….……51
5.6 綜合探討影響牙本質內應力分佈之因子………….……53
5.7 臨床建議……………………………………….……..…..54
第六章結論……..………….…….……….……………………….….55
第七章參考文獻………..………….…….……….………….….……57
∼ 圖 次∼
第二章
圖2.1 上顎正中門齒的結構…………………………………………13
第三章
圖3.1.1 研究流程………………………………………………………18
圖3.2.1 門齒X光攝影圖(a)正視圖(b)側視圖……………………19
圖3.3.1 修正後的牙齒表面元素模型(a)牙釉質(b)牙本質…………21
圖3.4.1 牙髓腔的SolidWorks實體模型(a)側視圖(b)等角視圖……22
圖3.4.2 窩洞實體模型(a)側視圖(b)等角視圖…………………23
圖3.4.3 三組不同填補深度之馬來膠與樹脂的實體模型(a)第一組樹脂:填補至舌窩以下約3mm深度(b)第一組馬來膠(c)第二組樹脂:填補至CEJ深度(d)第二組馬來膠(d)第三組樹脂:填補至CEJ以下2mm深度(f)第三組馬來膠……..23
圖3.4.4 三組復形物之三維有限元素模型(a)第一組樹脂:填補至舌窩以下約3mm深度(b)第一組馬來膠(c)第二組樹脂:填補至CEJ深度(d)第二組馬來膠(d)第三組樹脂:填補至CEJ以下2mm深度(f)第三組馬來膠……………………24
圖3.4.5 復形後門齒之三維有限元素模型(a)牙釉質(b)牙本質(c)窩洞(d)牙骨質(e)牙周膜韌帶(f)緻密骨(g)齒槽骨(h)堆疊後之門齒…………………………………………..25
圖3.4.6 三種邊界條件之設定(a)切緣負載(Incisal loading)(b)唇側負載(laboal loading)(c)咬合負載(Lingual loading)……..27
圖3.5.1 特殊幾何形狀窩洞之實體模型(a)第一種特殊幾何形狀窩洞(A1-Cut)之側視圖(b)第一種特殊幾何形狀窩洞之正視圖(c)第二種特殊幾何形狀窩洞(A2-Cut)之側視圖(d)第二種特殊幾何形狀窩洞之側視圖………………………..29
圖3.5.2 特殊幾何補綴形狀之表面有限元素模型(a)A1-Cut(b)A2-Cut………………………………………………………..30
第四章
圖4.1.1 汞齊合金補綴門齒之von Mises應力分布圖(a)補綴至舌窩以下約3mm深度(b)補綴至CEJ深度(c)補綴至CEJ以下2mm深度【應力範圍:0~40MPa】………………………33
圖4.1.2 汞齊合金補綴門齒之不同補綴深度的von-Mises應力分布比較(a)舌側(b)唇側【Am.-1:補綴至舌窩以下約3mm深度;Am.-2:補綴至CEJ深度;Am.-3:補綴至CEJ以下2mm深度】…………………………………………………………33
圖4.1.3 複合樹脂補綴門齒之von Mises應力分布圖(a)補綴至舌窩以下約3mm深度(b)補綴至CEJ深度(c)補綴至CEJ以下2mm深度【應力範圍:0~40MPa】…………...…………….34
圖4.1.4 複合樹脂補綴門齒之不同補綴深度的von Mises應力分布比較(a)舌側(b)唇側【C.R.-1:補綴至舌窩以下約3mm深度;C.R.-2:補綴至CEJ深度;C.R.-3:補綴至CEJ以下2mm深度】………………………………………………………..34
圖4.1.5 玻璃離子水門汀補綴門齒之von Mises應力分布圖(a)補綴深度至舌窩以下約3mm(b)補綴深度至CEJ(c)補綴深度至CEJ以下2mm【應力範圍:0~40MPa】……………………35
圖4.1.6 玻璃離子水門汀補綴門齒之不同補綴深度的von Mises應力分布比較(a)舌側(b)唇側【G.I.-1:補綴至舌窩以下約3mm深度;G.I.-2:補綴至CEJ深度;G.I.-3:補綴至CEJ以下2mm深度】………………………………………………..35
圖4.1.7 汞齊合金補綴門齒之von Mises應力分布圖(a)補綴至舌窩以下約3mm深度(b)補綴至CEJ深度(c)補綴至CEJ以下2mm深度【應力範圍:0~40MPa】…………………………36
圖4.1.8 汞齊合金補綴門齒之不同補綴深度的von Mises應力分布比較(a)舌側(b)唇側………………………………………37
圖4.1.9 複合樹脂補綴門齒之von Mises應力分布圖(a)補綴至舌窩以下約3mm深度(b)補綴至CEJ深度(c)補綴至CEJ以下2mm深度【應力範圍:0~40MPa】……………………..37
圖4.1.10 複合樹脂補綴門齒之不同補綴深度的von Mises應力分布比較(a)舌側(b)唇側………………………………………..38
圖4.1.11 玻璃離子水門汀補綴門齒之von Mises應力分布圖(a)補綴至舌窩以下約3mm深度(b)補綴至CEJ深度(c)補綴至CEJ以下2mm深度【應力範圍:0~40MPa】………………..38
圖4.1.12 玻璃離子水門汀補綴門齒之不同補綴深度的von Mises應力分布比較(a)舌側(b)唇側………………………………….39
圖4.2.1 舌側負載下,特殊幾何形狀之汞齊合金補綴門齒的von Mises應力分布(a)normal(b)A1-Cut(c)A2-Cut【應力範圍:0~40MPa】….…………………………………………………40
圖4.2.2 舌側負載下,不同幾何形狀之汞齊合金補綴門齒的von Mises應力分布比較(a)normal(b)舌側(c)唇側【normal:一般補綴】………………………………………………………40
圖4.2.3 唇側負載下,特殊幾何形狀之汞齊合金補綴門齒的von Mises應力分布(a)normal(b)A1-Cut(c)A2-Cut【應力範圍:0~40MPa】……………………………………………...……..41
圖4.2.4 唇側負載下,不同幾何形狀之汞齊合金補綴門齒的von Mises應力分布比較:補綴至舌窩以下3mm(a)舌側(b)唇側……………………………………………………………..42
圖4.2.5 舌側負載下,特殊幾何形狀之汞齊合金補綴門齒的von Mises應力分布(a)normal(b)A1-Cut(c)A2-Cut【應力範圍:0~40MPa】………………………………………………...…43
圖4.2.6 舌側負載下,不同幾何形狀之玻璃離子水門汀補綴門齒的von Mises應力分布比較:補綴至舌窩以下3mm(a)舌側(b)唇側………………………………………………………….. 43
圖4.3.1 牙周膜韌帶完全固定與可滑動門齒唇側與舌側牙髓腔壁之牙本質的von-Mises應力比較(a)舌側(b)唇側……………….44
∼ 表 次∼
表3.4.1 牙齒與復形物的材料性質……………………………...….….27
表5.1 以應變能總和計算不同元素數量模型之誤差量…………….47
【1】Ellis SGS, McCord JF, Burke FJT. Predisposing and Contributing Factors for Complete and Incomplete Tooth Fractures. Dent Update 1999; 26: 150-158.【2】Gher ME, Dunlap RM, Anderson MH, Kuhl LV. Clinical survey of fractured teeth. JADA 1987; 114: 174-177.【3】Blair HA. The Role of Endodontics in Restorative Dentistry. Dent Clin North Am 1971; 115(3): 619-626.【4】Ford TRP (1997). Harty’s Endodontics in Clinical Practice. 4TH Ed.【5】Major, MA (1993) Dental Anatomy, Physiology and Occlusion. 7TH Ed, 308-358, W. B. Saunders Company.【6】Ford TRP (1997). Endodontics in Clinical Practice. 4TH Ed, 8-47, 81-103, 123-1147.【7】Telli C, Gűlkan P, Raab W. Additional studies on the distribution of stresses during vertical compaction of gutta-percha in the root canal. Brit Dent J 1999; 187(1): 32-37.【8】Telli C, Gűlkan P. Stress analysis during root canal filling by vertical and lateral condensation procedures: a three-dimensional finite element model of a maxillary canine tooth. Brit Dent J 1998; 185(2): 79-86.【9】Yaman SD, Alacam T, Taman Y. Analysis of Stress Distribution in a Vertically Condensed Maxillary Central Incisor Root Canal. J Endod 1995; 21(6): 321-325.【10】Barkhordar RA, Plesh O, Curtis DA, Parisi RG. Fracture resistance of endodontically treated teeth restored with bonded amalgam and full crowns. Gen Den 1999; 47(4): 404-407.【11】Sorensen JA, Martinoff JT. Endodontically treated teeth as abutments. J Prosthet Dent 1985; 53: 631-636.【12】Howe CA, McKendry DJ. Effect of endodontic access preparation on resistance to crown-root fracture. JADA 1990; 121: 712-715.【13】Reeh ESR, Messer HH, Douglas WH. Reduction in Tooth Stiffness as a Result of Endodontic and Restorative Procedures. J Endod 1989; 15(11): 512-516.【14】E.S. Reeh, W.H. Douglas1, and H.H. Messer. Stiffness of Endodonitically-treated Teeth Related to Restoration Technique. J Dent November 1989 Res 68(11): 1540-1544【15】Yaman SD, Alacam T, Taman Y. Analysis of Stress Distribution in a Maxillary Central Incisor Subjected to Various Post and Core Applications. J Endod 1998; 24(2): 107-111.【16】Ho MH, Lee SY, Chen HH, Lee MC. Three-dimensional finite element analysis fo the effects of posts on stress distribution in dentin. J Prosthet Dent 1994; 72(4): 367-372.【17】Trabert KC, Cooney JP. The endodontically treated tooth restorative concepts and techniques. Dent Clin North Am 1984; 28: 923-951.【18】Sokol DJ. Effective use of current core and post concepts. J Prosthet Dent 1984; 52: 231-234.【19】Ross IF. Fracture susceptibility of endodontically treated teeth. J Endod 1980; 6(5): 560-565.【20】Assif D, Gorfil C. Biomechanical conderations in restoring endodontically treated teeth. J Prosthet Dent 1994; 71: 565-567.【21】Trope M, Maltz DO, Transtad L. Resistance to fracture of restored endodontically treated tyeeth. Endod Dent Traumatol 1985; 1: 108-111.【22】Helfer AR, Melnick S, Schilder H. Determination of the moisture content of vital and pulpless teeth. Oral Surg 1972; 34: 661-669.【23】Joanne N.Walton, N. Dortin, Ned Glick. Apical root strain as a function of post extersion into a composite resin core. J Prosthet Dent 1996; 75: 499-505.【24】Heydecke G, Butz F, Stub JR. Fracture strength and survival rate of endodontically treated maxillary incisors with approximal cavities after restoration with different post and core systems: an in-vitro study. J Dent 2001; 29: 427-433.【25】洪宜菁(2000). 完整及修補後門齒之有限元素分析, 中原大學碩士論文.【26】Ko CC, Chu CS, Chung KH, Lee MC. Effects of posts on dentin stress distribution in pulpless teeth. J Prosthet Dent 1992; 68: 421-427.【27】Cailleteau JG, Rieger WR, Akin JE. A Comparison of intracanal Stresses in a Post-Restored Tooth Utilizing the Finite Element Method. J Endod 1992; 18(11): 540-544.【28】Stegaroiu R, Kusakari H, Nishiyama S, Miyakawa O. Influence of Prosthesis Material on Stress Distribution in Bone and Implant: A 3-Dimensional Finite Element Analysis. Int J Oral Maxillofac Implants 1998; 13: 781-790.【29】Williams KR, Edmundson JT. A finite element stress analysis of an endodontically restored tooth. Engineering in Medicine 1984;13(4):167-173.【30】Reinhardt RA, Krejci RF, Pao YC, Stannard JG. Dentin Stresses in Post-reconstructed Teeth with Diminishing Bone Support. J Dent Res 1983; 62(9): 1002-1008【31】Davy DT, Krejci RF. Determination of Stress Patterns in Root-filled Teeth incorporating Various Dowel Designs. J Dent Res 1981; 60(7): 1301-1310.【32】Assif D, Bitenski A, Pilo R. Effect of post design on resistance to fracture of endodontically treated teeth with complete crowns. J Prosthet Dent 1993; 69: 36-40.【33】Gailleteau JG, Akin JE. A Comparison of Intracanal Stresses in a post-Restored Tooth Utilizing the Finite Element Method. J Endod 1992; 18(11): 540-544.【34】Guzy GE, Jack I. Nicholls. In vitro comparison of intact endodontically treated teeth with and without endo-post reinforcement. J Prosthet Dent 1979; 42(1): 39-43.【35】Berg JH. The continuum of restorative materials in pediatric dentistry-a review for the clinician. Pediatr Dent 1998; 20(2): 93-100. 【36】Brown D. The Status of Indirect Restorative Dental Materials. Dent Update 1998; 25: 23-34. 【37】Yettram AL, Wright KWJ, Pickard HM. Finite Element Stress Analysis of the Crowns of Normal and Restored Teeth. J Dent Res 1976; 55(6): 1004-1011.【38】Qualtrough AJE, Cawte SG, Wilson NHF. Influence of Different Transitional Restorations on the Fracture Resistance of Premolar Teeth. Oper Dent 2001; 26: 267-272.【39】Lui JL. Enhanced post crown retention in resin composite-reinforced, compromised, root-filled teeth. Quintessence Int 1999; 30: 601-606.【40】Porte A, Lutz F, Lund MR, Swartz ML, Cochran MA. Cavity Designs for Composite Resins. Oper Dent 1984; 9: 50-56.【41】de Vree JHP, Peters MCRB, Plasschaert AJM. The Influence of Modification of Cavity Design on Distrubution of Stresses in a Restored Molar. J Dent Res 1984; 63(10): 1217-1220.【42】Trope M, Tronstad L, Resistance to Fracture of Endodontically Treated Premolars Restored with Glass lonomer Cement or Acid Etch Composite Resin. J Endod 1991; 17(6): 257-259.【43】Goel VK, Khera SC, Gurusami S, Chen RCS. Effect of cavity depth on stress in a reastored tooth. J Prosthet Dent 1992; 67(2): 174-183.【44】Spierings TAM, Peters MCRB, Bosman F, AJM Plasschaert. The influence of cavity geometry on heart transmission in restored teeth. J Dent 1986; 14: 47-51.【45】Barkhordar RA, Stark MM. Sealing ability of intermediate restorations and cavity design used in endodontics. Oral Surg Oral Med Oral Pathol 1990; 69: 99-101.【46】Hickel R, Dasch W, Janda R, Tyas M, Anusavice K. New direct restorative materials. Int Dent J 1998; 48(1): 3-16【47】Eidelman E. Composite Resin support of undermined enamel in amalgam restorations. Pediatr Dent 1999; 21(2): 118-120.【48】Small BW. Direct posterior composite restorations-State of the art 1998. Gen Dent 1998; 46: 26-1131.【49】Pidaparti RMV, Beatty MW. Fracture toughness determination of dental materials by laboratory testing and finite element models. J Biomed Mater Res 1995; 29: 309-314.【50】Ausiello P, De Gee AJ, Rengo S, Davidson CL. Fracture resistance of endodontically treated premolars adhesively restorated. American J Dent 1997; 10: 237-241.【51】Ausiello P, Davidson CL, Cascone P, De Gee AJ, Rengo S. Debonding of adhesively restored deep class II MOD restorations after functional loading. American J Dent 1999a; 12: 84-88.【52】P Ausielloa, Apicella, CL Davidson, S Rengo. 3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites. J Biomech 2001; 34: 1269-1277.【53】Combe EC, Douglas WH. The Future of Dental Materials. Dent Update 1998; 25(9): 411-417.【54】Setcos JC, Staninec M, Wilson NHF. Bonding of Amalgam Restorations: Existing Knowledge and Future Prospects. Oper Dent 2000; 25(2): 121-129.【55】Rubin C, Krishnamurthy N, Capilouto E, YI H. Stress Analysis of the Human Tooth Using a Three-dimensional Finite Element Model. J Dent Res 1983; 62(2): 82-86.【56】Middleton J, Jones M, Fdsrcs, Wilson A. The role of the periodontal ligament in bone modeling: The initial development of a time-dependent finite element model. Am J Orthod Dentofac 1996; 109: 156-162.【57】McGuinness NJP, Wilson AN, Jones ML, Middleton J. A stress analysis of the periodontal ligament under various orthodontic loadings. Europ J Orthodont 1991; 13: 231-242.【58】Tanne K, Inoue Y, Sakuda M. Biomechanical behavior of the periodontium before and after orthodontics tooth movement. Angle Orthod 1995; 65(2): 123-128.【59】McGuinness NJP, Wilson AN, Jones M, Middleton J, Norman R. Robertson. Stresses induced by edgewise appliances in the periodontal ligament-a finite element study. Angle Orthod 1992; 62(1): 15-21.【60】Middleton J, Jones ML, Wilson AN. Three-dimensional analysis of orthodontic tooth movement. J Biomed Eng 1990; 12: 319-327.【61】Huysmans MCDNJM, der Varst PGTV. Finite element analysis of quasistatic and fatigue failure of post and cores. J Dent 1993; 211: 57-644.【62】Korioth TWP, Waldron TW, Versluis A, Schulte JK. Forces and moments generated at the dental incisors during forceful biting in humans. J Biomech 1997; 30(6): 631-633.【63】Korioth TWP, Versluis A. Modeling the Mechanical Behavior of the Jaws and their Related Structures by Finite Element (FE) Analysis. Crit Rev Oral Biol M 1997; 8(1): 90-104.【64】Assif D, Oren E, Marshak BL, Aviv I. Photoelastic analysis of stress transfer by endodontically treated teeth to the supporting structure using different restorative techniques. J Prosthet Dent 1989; 61: 535-543.【65】Darbar UR, Huggett R, Harrison A. Stress analysis techniques in complete dentures. J Dent 1994; 22: 259-264.【66】Morin DL, Douglas WH, Cross M, DeLong R. Biophysical stress analysis of restored teeth: experimental strain measurement. Dent Mater 1988; 4: 41-48.【67】Darendeliler S, Darendeliler H, Kinglu T. Analysis of a ccentral maxillary incisor by using a three-dimensional finite element method. J Oral Rehabil 1992; 19: 371-383.【68】Lin CL, Chang CH, Cheng CS, Wang CH. Automatic finite element mesh generation for maxillary second premolar. 1999; 59: 187-195.【69】Wilson AN, Middleton J, McGuinness N, Jones M. A Finite Element Study of Canine Retraction with a Palatal Spring. British Journal of Orthodontics 1991; 18: 211-218.【70】Khera SC, Goel VK, Chen RCS, Gurusami SA. A Three-dimensional Finite Element Model. Oper Dent 1988; 13: 128-137.【71】王妙先(1990), 牙齒解剖與型態學Concise Dental Anatomy And Morphology,合計圖書出版社.【72】Harris EF, Hicks JD. A radiographic assessment of enamel thickness in human maxillary incisors. Archives of Oral Biology 1998; 43: 825-831.【73】林俊彬(1999), 醫學工程教科書大綱-實用牙科生物力學Practical Dental Biomechanics, 教育部本土化醫學工程教科書暨醫療器材技術規範編輯委員會.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top