跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/13 22:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾培淵
研究生(外文):Pei-Yuan Tseng
論文名稱:二六族化合物半導體塊材及奈米結構的成長與特性分析
論文名稱(外文):Growth and Characterization of Bulk and Nanostructure of II-VI Compound Semiconductors
指導教授:周武清
指導教授(外文):Wu-ching Chou
學位類別:碩士
校院名稱:中原大學
系所名稱:應用物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:46
中文關鍵詞:碲化鋅鎘量子點塊材碲化鋅奈米結構
外文關鍵詞:NanostructureCdZnTebulkQuantum dotZnTe
相關次數:
  • 被引用被引用:1
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:1
利用溫度梯度溶劑長晶法成長不同濃度的碲化鋅鎘晶體,藉由光激螢光譜實驗研究光學特性。其近能隙光激螢光譜的半高寬最窄可達11毫電子伏特,而缺陷輻射密度最低為0.020,並且利用聲學聲子、縱向光學聲子及雜質等與激子作用的參數來擬合隨著溫度變化之光激螢光譜線寬。
除了碲化鋅鎘晶體外,利用分子束磊晶系統在擁有200 奈米硒化鋅緩衝層的砷化鎵基板上成長自聚性碲化鋅量子點的結構,並藉由原子力顯微鏡研究結構的表面形貌。觀察到大小尺寸不同的兩種量子點結構,其分布密度分別接近每平分方公分108和109個,並定義出碲化鋅量子點為三維的Volmer-Weber成長模式。較大尺寸量子點其第二型能帶間的光學躍遷造成強的光激螢光訊號,可以在1.9到2.2電子伏特間觀察到,而較小尺寸的碲化鋅量子點其螢光訊號可以在2.26電子伏特附近觀察到。
Cd1-xZnxTe crystals were grown by the temperature gradient solution growth (TGSG). Optical properties of the Cd1-xZnxTe crystals were investigated by the photoluminescence (PL) spectroscopy. The full width at half maximum (FWHM) of 11 meV for the near band edge photoluminescence was obtained. The temperature dependent broadening of the photoluminescence line-width was fitted by the acoustic phonon, longitudinal optical phonon, and impurity interaction parameters. The defect radiative density is as low as 0.02.
In addition to the Cd1-xZnxTe crystals, self-assembled ZnTe quantum dot structures were grown on the GaAs substrates with the ZnSe buffer layer of 200 nm by the molecular beam epitaxy (MBE). Surface morphology was studied by the atomic force microscopy (AFM). A three-dimensional Volmer-Weber growth mode was identified. Two types of dots were observed. Strong photoluminescence observed at 1.9-2.2 eV was attributed to the emission from the type II ZnTe quantum dots with larger size. While, emission from the smaller ZnTe quantum dots is observed at an energy around 2.26 eV. The density of the larger and smaller dots was approximately 108/cm2 and 109/cm2, respectively.
中文摘要………………………………………………………………I
英文摘要……………………………………………………………II
致謝…………………………………………………………………III
目錄…………………………………………………………………IV
第一章緒論………………………………………………………V
第二章實驗………………………………………………………VII
第三章碲化鋅鎘塊材的特性分析………………………………VIII
第四章碲化鋅量子點的特性分析………………………………IX
第五章結論……………………………………………………X
附錄…………………………………………………………………XI
英文
Chapter I. Introduction………………………………………………………1
Chapter II. Experiments………………………………………………………6
II.1. Sample Growth………………………………………………….6
II.1.1 Bulk Crystal Growth (TGSG)…………………………….6
II.1.2. Molecular beam epitaxy (MBE)………………………….7
II.2. Photoluminescence spectroscopy (PL)…………………………10
Chapter III. Characterization of Cd1-xZnxTe Bulk……………………………15
Chapter IV. Characterization of ZnTe Quantum Dots………………………..26
Chapter V. Conclusions……………………………………………………..33
[1.1]H. Y. Shin and C. Y. Sun, Mater. Sci. Eng. B 41, 345 (1996).[1.2]J. Franc, P. Höschl, E. Belas, R. Grill, P. Hlídek, P. Moravec, and J. Bok, Nucl. Instrum. Meth. A 434, 146 (1999).[1.3]T. Whitaker, Compd. Semicond. 5, 39 (1999).[1.4]N. C. Giles-Taylor, R. N. Bicknell, D. K. Blanks, T. H. Myers, and J. F. Schetzina, J. Vac. Scl. Technol. A 3, 76 (1985).[1.5]S. L. Bell, and S. Sen, J. Vac. Scl. Technol. A 3,112 (1985).[1.6]R. Triboulet, T. N. Duy, and A. Durand, J. Vac. Scl. Technol. A 3, 95 (1985).[1.7]C. M. Greaves, B. A. Brunett, J. M. Van Scyoc, T. E. Schlesinger, and R. B.James, Nucl. Instrum. Meth. A 458, 96 (2001).[1.8]D. V. Korbutyak, S. G. Krylyuk, P. M. Tkachuk, V. I. Tkachuk, N. D. Korbutjak, and M. D. Raransky, J. Cryst. Growth 197, 659 (1999).[1.9]J. González-Hernández, E. López-Cruz, D. D. Allred, and Worth P. Allred, J. Vac. Scl. Technol. A 8, 3255 (1990).[1.10]W. C. Chou, F. R. Chen, T. Y. Chiang, H. Y. Shin, C. Y. Sun, C. M. Lin, K. Chern-Yu, C. T. Tsai, and D. S. Chuu, J. Cryst. Growth 169, 747 (1996).[1.11]M. Shima, Y. Sakuma, Y. Awano, and N. Yokoyama, Appl. Phys. Lett. 77, 441 (2000).[1.12]A. J. Shields, M. P. O’Sullivan, I. Farrer, D. A. Ritchie, R. A. Hogg, M. L. Leadbeater, C. E. Norman, and M. Pepper, Appl. Phys. Lett. 76, 3673 (2000).[1.13]H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S.-H. Chang, S. T. Ho, and G. S. Solomon, Appl. Phys. Lett. 76, 3519 (2000).[1.14]M. Grundmann, A. Weber, K. Goedeet, V. M. Ustinov, A. E. Zhukov, N. N. Ledentsov, P. S. Kop’ev, and Zh. I. Alferov., Appl. Phys. Lett. 77, 4 (2000).[1.15]B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux, Appl. Phys. Lett. 75, 962 (1999).[1.16]K. Kitamura, H. Umeya, A. Jia, M. Shimotomai, Y. Kato, M. Kobayashi, A. Yoshikawa, K. Takahashi, J. Cryst. Growth, 214/215, 680 (2000).[1.17]I. Daruka, J. Tersoff, and A.-L. Barabási, Phys. Rev. Lett. 82, 2753 (1999).[1.18]S. Lee, I. Daruka, C. S. Kim, A.-L. Barabási, J. L. Merz, and J. K. Furdyna, Phys. Rev. Lett. 81, 3479 (1998).[1.19]D. Schikora, S. Schwedhelm, D. J. As, K. Lischka, D. Litvinov, A. Rosenauer, D. Gerthsen, M. Strassburg, A. Hoffmann, and D. Bimberg, Appl. Phys. Lett. 76, 418 (2000).[1.20]S. Kuroda, Y. Terai, K. Takita, T. Okuno, and Y. Masumoto, J. Cryst. Growth, 184/185, 274 (1998).[1.21]G. Leo, M. Longo, N. Lovergine, M. Mazzer, A.M. Mancini, M. Berti, and A.V. Drigo, J. Cryst. Growth, 184/185 1332 (1998).[1.22]M. C. Harris Liao, Y. H. Chang, Y. F. Chen, J. W. Hsu, J. M. Lin and W. C. Chou, Appl. Phys. Lett. 70, 2256 (1997).[2.1]W. C. Chou, F. R. Chen, T. Y. Chiang, H. Y. Shin, C. Y. Sun, C. M. Lin, K. Chern-Yu, C. T. Tsai, and D. S. Chuu, J. Cryst. Growth 169, 747 (1996).[3.1]E. Rzepka, A. Lusson, A. Riviere, A. Aoudia, Y. Marfaing, and R. Triboulet, J. Cryst. Growth 161, 286 (1996).[3.2]K. Oettinger, D. M. Hofmann, Al. L. Efros, B. K. Meyer, M. Salk, and K. W. Benz, J. Appl. Phys. 71, 4523 (1992)[3.3]N. C. Giles-Taylor, R. N. Bicknell, D. K. Blanks, T. H. Myers, and J. F. Schetzina, J. Vac. Scl. Technol. A 3, 76 (1985).[3.4]J. D. Lambkin, D. J. Dunstan, K. P. Homewwod and L. K. Howard, Appl. Phys. Lett. 57, 1986 (1990).[3.5]S. Weber, W. Limmer, K. Thonke, R. Sauer, K. Oanzlaff, G. Bacher, H.P. Meier and P. Roentgen, Phys. Rev. B 52, 14739 (1995).[3.6]M. C. Harris Liao, Y. H. Chang, C. C. Tsai, M. H. Chieng, and Y. F. Chen, J. Appl. Phys. 86, 4694 (1999).[3.7]S. Nakamura, T. Sakashita, K. Yoshimura, Y. Yamada and T. Taguchi, Jpn. J. Appl. Phys. 36, 491 (1997).[3.8]J. Lee, E. S. Koteles, and M. O. Vassell, Phys. Rev. B 33, 5512 (1986).[3.9]D. N. Talwar, Z. C. Feng, and P. Becla, Phys. Rev. B 48, 17064 (1993).[3.10]W. C. Chou, F. R. Chen, T. Y. Chiang, H. Y. Shin, C. Y. Sun, C. M. Lin, K. Chern-Yu, C. T. Tsai, and D. S. Chuu, J. Cryst. Growth 169, 747 (1996).[4.1]J. C. Kim, H. Rho, L.M. Smith, H.E. Jackson, S. Lee, M. Dobrowolska, and J.K. Furdyna, Appl. Phys. Lett. 75, 214 (1999).[4.2]J. C. Kim, H. Rho, L. M. Smith, H.E. Jackson, S. Lee, M. Dobrowolska, J.L. Merz, and J.K. Furdyna, Appl. Phys. Lett. 73, 3399 (1998).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊