跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳自平
研究生(外文):Tzu-Ping Chen
論文名稱:半導體異質結構之光學研究
論文名稱(外文):Optical studies of semiconductor heterostructures
指導教授:沈志霖
指導教授(外文):Jhih-Lin Shen
學位類別:碩士
校院名稱:中原大學
系所名稱:應用物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:46
中文關鍵詞:無接點電場調制反射光譜時間鑑別光激螢光光譜磷砷化銦鎵氮化銦鎵
外文關鍵詞:InGaN/GaNInGaAsPcontactless electroreflectancetime-resolved photoluminescence
相關次數:
  • 被引用被引用:1
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:3
摘要
本論文利用無接點式電場調制反射光譜(contactless electroreflectance-CER)及光激螢光(Photoluminescence-PL)量測技術,研究摻雜不同濃度鈥(Ho)之磷砷化銦鎵(InGaAsP)磊晶層,及不同濃度銦的氮化銦鎵/氮化鎵(InGaN/GaN)多層量子井(MQWs)發光二極體(LEDs)結構。
量測溫度為14 K時,發現摻雜鈥樣品的調制反射光譜,隨摻雜鈥濃度由0∼0.110 wt%變化,其展寬變小,因此於磷砷化銦鎵磊晶層中摻雜適量的鈥會使此材料發光特性變好。量測溫度為110 K時,討論摻雜鈥使樣品產生應變之大小。此外改變溫度由14∼300 K,其能隙位置有紅位移現象符合Varshni及O’Donnell理論模型。
研究量子井中銦濃度為18∼20 wt%之氮化銦鎵/氮化鎵樣品,在改變溫度的電場調制反射光譜,發現其能隙有二個區段不同之變化。以時間鑑別光激螢光量測系統(time-resolved photoluminescence-TRPL)量測此樣品,發現躍遷能量強度隨時間的衰變在低能量部分比高能量部分慢,隨銦濃度增加螢光衰減時間加長。在不同濃度銦光激螢光光譜中,發現隨濃度增加其半高寬變寬,這些現象皆可由不均勻的銦產生的侷限效應加以解釋。
ABSTRACT
Contactless electroreflectance(CER) and photoluminescence(PL) measurements were used to study the structural properties of Ho-doped InGaAsP epilayers and InGaN/GaN multiple quantum wells(MQWs) light emitting devices(LEDs).
The broadening parameter of the InGaAsP band-to-band transition at 14 K was found to decrease from 0~0.110 wt%. A strain-induced splitting of the valence band in Ho-doped InGaAsP layers has been found in CER spectra at 110 K. The red-shift of transition energy in the temperature range 14~300 K was fitted by Varshni relation and O’Donnell formula.
The InGaN/GaN MQWs LEDs with In content about 18~20 wt% was analyzed with temperature dependent CER. Two regions of transition energy were found in different temperature ranges. This sample was also measured by time-resolved photoluminescence(TRPL). The time decay of transition intensity at lower energy is slower than that at higher energy. The decay time of PL increases with In concentration. The FWHM of PL spectra increases with In concentration. These results were interpreted in terms of localization induced by inhomogeneous In concentration.
目錄
摘要I
ABSTRACTII
誌謝III
目錄IV
圖目錄VI
表目錄X
第一章緒論1
第二章原理5
2.1電場調制反射光譜5
2.2時間鑑別光激螢光光譜7
2.3應變8
2.4侷限(localization)效應10
第三章量測系統及樣品介紹12
3.1量測系統12
3.1.1無接點式電場調制反射光譜12
3.1.2時間鑑別光激螢光光譜18
3.2樣品介紹25
3.2.1磷砷化銦鎵磊晶層25
3.2.2氮化銦鎵/氮化鎵多層量子井發光二極體結構26
第四章結果及討論27
4.1成長於磷化銦基板之磷砷化銦鎵磊晶層27
4.1.1樣品能隙隨溫度改變之電場調制反射光譜27
4.1.2低溫量測摻雜不同濃度鈥之磷砷化銦鎵磊晶層30
4.1.3溫度110 K量測摻雜不同濃度鈥磷砷化銦鎵磊晶層32
4.1.4半導體異質結構應變計算34
4.2成長於藍寶石基板氮化銦鎵/氮化鎵多層量子井發光二極體結構36
4.2.1氮化銦鎵/氮化鎵多層量子井發光二極體結構電場調制反射光譜36
4.2.2氮化銦鎵/氮化鎵多層量子井發光二極體結構時間鑑別光激螢光光譜40
4.2.3氮化銦鎵/氮化鎵多層量子井發光二極體結構光激螢光光譜44
第五章結論46
參考文獻48
參考文獻[1]B. G. Streetman, and S. Banerjee, “Solid State Electronic Devices,” Prentice Hall. (2000). [2]史光國 “現代半導體發光及雷射二極體材料技術”全華科技圖書股份有限公司. (2001). [3]C.Kittel”Introduction to Solid State Physics”John Wiley & Sons,Inc. (1996).[4]廖昆豐“摻雜稀土元素磷化銦鎵砷磊晶層之特性研究及元件應用”私立中原大學電子工程學系. (2000).[5]R. Saito, and T. Kimura, Phys. Rev. B 46, 1423 (1992).[6]J. M. Zavada and D. Zhang, Solid State Electron. 38,1285 (1995).[7]K. Takahei, and A. Taguchi, J. Appl. Phys. 78, 5614 (1995).[8]S. M. Sze, ”Physics of Semiconductor Devices,” John Wiley & Sons,Inc. (1985).[9]D. E. Asepns, “Modulation Spectroscopy/Electric Field Effects on the Dielectric Function of Semiconductors”Bell Laboratories. (1980).[10]R. K. Ahrenkiel, “Measurement of Minority-Carrier Lifetime by Time-Resolved Photoluminescence,” Solid State Electron. 35, 239 (1992).[11] M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, and M. A. Khan, Q. Chen, “Time-Resolved Photoluminescence Studies of InGaN Epilayers,” Appl. Phys. Lett. 69, 2837 (1996).[12] Text of MIJ-NSR, 2, Article 34.[13] Dunbar, U. Bangert, P. Dawson, M. Halsall, Y. Shiraki, M. Miura, I. Berbezier, B. A. Joyce, and J. Zhang, “Structural, Composition and Optical Properties of Self-Organised Ge Quantum Dots,” Phys. Stat. Sol. (b) 224, 265 (2001).[14] G. Bohnert, R. H cker, and A. Hangleiter, “Position Resolved Carrier Lifetime Measurement in Silicon Power Device by Time Resolved Photoluminescence Spectroscopy,” J. Physique C4, 617 (1988).[15] J. I. Pankove, “Optical Processes in Semicoductors,” Prentic-Hall.Inc. (1971).[16] J. B. M. Novo, and F. P. T. Pessing, “Optimization of a Boxcar Integrator/Averager System for Excited-State Lifetime Measurements,” Applied Spectroscopy. 46, 852 (1992).[17] S. L. Chuang, “Physics of Optoelectronic Devices,”Wiley-Interscience publication. (1995).[18] M. Levinshtein, S. Rumyantsev, and M. Shur, “Handbook Series on Semiconductor Parameters,”2, World Scientific. (1999).[19] C. F. Klingshirn, “Semiconductor Optics,” Springer-Verlag Berlin Heidelberg. (1995).[20] Y. P. Varshni, ”Temperature dependence of the energy gap in semiconductors,” Physica. 34, 149 (1967).[21] K. P. O’Donnell, X. Chen, ”Temperature dependence of semiconductor band gap,” Appl. Phys. Lett. 58, 2924 (1991).[22] Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ”S-Shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,”Appl. Phys. Lett. 73, 1370 (1998).[23] B. K. Ridley, “Quantmm Processes in Semiconductors,” Oxford University press. (1988).[24] Y. Narukawa, S. Saijyo, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, ”Time-resolved electroluminescence spectroscopy of InGaN single quantum well LEDs,” Journal of Crystal Growth 189/190, 593 (1998).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top