|
[1] L. Onsager, Crystal Statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65: 117-149 (1944).[2] R. B. Griths and M. Kaufman, Spin systems on hierarchical lattices. Introduction and thermodynamic limit, Phys. Rev. B 26: 5022-5032 (1982).[3] N. M. Svrakic, J. Kertesz, and W. Selke, Hierarchical lattice with competing interactions: an example of a nonlinear map, J. Phys. A 15: L427-L432 (1982).[4] B. Derrida, J. P. Eckmann, and A. Erzan, Renormalisation groups with periodic and aperiodic orbits, J. Phys. A 16: 893-906 (1983).[5] M. Kaufman and R. B. Griffiths, Exactly soluble Ising models on hierarchical lattices, Phys. Rev. B 24: 496-498 (1981).[6] A. Erzan, Hierarchical q-state Potts models with periodic and aperiodic renormalization group trajectories, Phys. Lett. A93: 237-240 (1983).[7] B. Derrida, L. De. Seze, and C. Itzykson, Fractal structure of zeros in hierarchical models, J. Stat. Phys. 33: 559-569 (1983).[8] B. Derrida, C. Itzykson, and J. M. Luck, Oscillatory critical amplitudes in hierarchical models, Commun. Math. Phys. 94: 115-132 (1985).[9] F. T. Lee and M. C. Huang, Ising model in an external field on a hierarchical lattice, J. Stat. Phys. 75: 1119-1135 (1994).[10] F. T. Lee and M. C. Huang, Critical exponents, Julia sets and lattice structures, Chinese J. Phys. 37: 398-410 (1999).[11] V. N. Plechko, Grassmann path-integral solution for a class of triangular type decorated Ising models, Physica A 152: 51-97 (1988).[12] V. N. Plechko and I. K. Sobolev, Specific heat of highly decorated 2D Ising models on a triangular lattice net with holes, Phys. Lett. A 157: 335-342 (1991).[13] T. M. Liaw, M. C. Huang, S. C. Lin, and M. C. Wu, Scaling functions of interfacial tensions for a class of Ising cylinders, Phys. Rev. B 60: 12994-13005 (1999).[14] C. Y. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions. I. Theory of condensation, Phys. Rev. 87: 404-409 (1952).[15] T. D. Lee and C. Y. Yang, Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model, Phys. Rev. 87: 410-419 (1952).[16] J. Stephenson and R. Couzen, Partition function zeros for the two-dimensional Ising model, Physica A 129: 201-210 (1984).[17] W. T. Lu and F. Y. Wu, Density of the Fisher zeroes for the Ising model, J. Stat. Phys. 102: 953-969 (2001).[18] M. E. Fisher, Lecture Note in Theoretical Physics, Vol. 7c, W. E. Brittin, ed. (University of Colorado Press, Boulder, 1965), pp. 1-159.[19] M. H. Jensen, L. P. Kadano, and I. Procaccia, Scaling structure and thermodynamics of strange sets, Phys. Rev. A 36: 1409-1420 (1987).[20] B. Hu and B. Lin, Yang-Lee zeros, Julia sets, and their singularity spectra, Phys. Rev. A 39: 4789-4796 (1989).[21] B. Hu and B. Lin, Fisher zeros and Julia sets: A multifractal analysis, Physica A 177: 38-44 (1991).[22] W. van Saarloos and D. A Kurtze, Location of zeros in the complex temperature plane: Absence of the Lee-Yang theorem, J. phys. A: Math. Gen. 17: 1301-1311 (1984).
|