跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/25 04:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝淑娟
研究生(外文):Shu-Jiuan Hsieh
論文名稱:不同胸腰椎補骨術之生物力學評估
論文名稱(外文):Biomechanical Evaluation of Different Types of Bone Graft Surgery in Thoracolumbar Vertebrae
指導教授:陳文斌陳文斌引用關係
指導教授(外文):Weng-Pen Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:67
中文關鍵詞:補骨有限元素法胸腰椎脊椎內固定器
外文關鍵詞:spinal instrumentation.bone graftthoracolumbar spinefinite element analysis
相關次數:
  • 被引用被引用:3
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在胸腰脊椎手術上,補骨是常被使用來增加骨融合和提供椎體穩定的方式,而腸骨則是經常被使用的自體骨。在胸腰椎手術施行時,肋骨通常必須被移除,因此也被認為是作為補骨的另一種選擇,然而,肋骨使用在胸腰椎前位補骨的生物力學效果並未在文獻上有報導。因此本研究的目的是在建立完整的胸腰椎有限元素模型,來評估使用腸骨、一截肋骨或是兩截肋骨,且有加入或是沒加入胸腰椎內固定器對於補骨本身的影響。我們採用T10到L2五節椎體的斷層掃描的影像,影像的取得為每隔3毫米取一片,總共54片,經由轉檔後建立出完整的實體模型,不過在此研究中我們只選用T12和L1兩節椎體作為分析模擬之用。由於在此為討論前位補骨,因此我們將椎間盤移除,並在椎體的左方植入三種補骨的材料作為模擬。在此我們假設在三種補骨術中皆已產生骨融合,且所有的補骨材料性質皆為相同,所有的接觸面皆為完全固定,因此沒有介面間滑動的問題。從分析結果中顯示,當只有使用一截肋骨做為補骨時,在補骨上的應力值會較使用兩截肋骨或腸骨為補骨時要大,且必須要配合使用脊椎內固定器,這顯示當使用一截肋骨做為補骨時會較早發生毀壞,但是當我們加入內固定器之後,一截肋骨上的應力分佈和使用腸骨時的應力分部會相近;當使用兩截肋骨或腸骨時,其補骨上的應力分布極為相似,因此我們知道當骨融合已經產生之後使用兩截肋骨做為補骨應該是可行的,但是腸骨依然是比較安全的選擇。
In spinal fusion surgery, bone grafts are commonly used to enhance bone fusion and to provide stability. In practice, autologous bone graft, such as, iliac bone crest is most often adopted. In thoracolumbar vertebral surgery, the ribs are often dissected and may be an alternative choice for bone graft besides iliac bone. However, the biomechanical efficacy of rib bone graft used in thoracolumbar anterior bone fusion was not reported in literature. The purpose of this study was to use a finite element model to evaluate the effects of using iliac bone; one rib or two ribs bone graft, with and without instrumentation in thoracolumbar vertebral bone graft surgery. Fifty-four transverse plane CT scan images were obtained at 3 mm intervals and used to create a T10 to L2 five-segment, three-dimensional finite element model. Only the T12-L1 motion segment was used for this study. The intervertebral disc in the segment was removed and anterior bone graft surgery was simulated. The bone fusion was assumed for all models, therefore, the iliac bone and rib bone were assigned with the same material property. All interfaces were assumed to be bond with no micromotion. Based on the stress results, we found that when only one rib bone was used, the stress in the graft was higher than that of the iliac bone graft and the two ribs bone graft conditions and spinal instrumentation must be applied. This implies that early collapse may occur when only one rib bone graft was applied. But if spinal instrumentation was applied, the stress on the one rib bone graft was similar with the two ribs bone graft and iliac crest bone graft. The stress distributions for the iliac bone graft and the two ribs bone graft were similar whether using spinal instrumentation or not. Therefore, two ribs bone graft may be an acceptable alternative besides iliac bone graft if fully bone fusion is established. If bone fusion is not established, then iliac bone graft may still be a safer choice than rib bone graft.
摘要1
Abstract2
致謝3
目錄4
圖索引6
表索引9
第1章 緒論10
1-1 引言10
1-2 研究背景10
1-3 文獻回顧12
1-3-1 脊椎有限元素分析之相關文獻回顧12
1-3-2 與脊椎相關研究之文獻13
1-4 研究目的16
1-5 論文架構16
第2章 基本理論與研究設備18
2-1 脊椎的生理結構18
2-1-1 脊椎的解剖學構造18
2-1-2 椎間盤的解剖學構造20
2-2 脊椎的損傷22
2-3 有限元素法23
第3章 研究方法與步驟25
3-1 影像處理26
3-2 實體模型的建立27
3-2-1 完整胸腰椎模型的建立27
3-2-2 補骨模型的建立29
3-2-3 加入內固定器之脊椎模型31
3-2-4 轉檔格式34
3-3 有限元素模型的建立34
3-3-1 完整胸腰椎有限元素模型34
3-3-2 補骨的有限元素模型37
3-3-3 加入內固定器之有限元素模型39
3-4 邊界條件的設定40
3-5 收斂測試43
3-5-1 完整胸腰椎模型的收斂43
3-5-2 局部椎體模型之收斂44
3-6 黏彈性之有限元素模型47
第4章 結果49
4-1 補骨上的應力分佈情形49
4-1-1 無內固定裝置49
4-1-2 加入後位內固定裝置50
4-1-3 加入前位內固定裝置51
4-2 比較不同固定器上螺絲的應力分佈情形51
4-3 黏彈性材料之結果54
第5章 討論56
5-1 幾何模型56
5-2 補骨與固定器上的結果56
5-3 黏彈性分析結果60
第6章 結論62
參考資料63
【1】Finkelstein JA, Chapman JR, and Mirza S. J. Spine Disorders, 1999, 12(5), 424-429.【2】Hernigou P, and Duparc F. Rib graft or cement to enhance screw fixation in anterior vertebral bodies. 1996, 9(4), 322-325.【3】Nakamura H, Yamano Y, Seki M, and Konishi S. Use of folded vascularized rib graft in anterior fusion after treatment of thoracic and upper lumbar lesion. J Neurosurg, 2001, 94, 323-327.【4】Goel VK, Kim YE, Lim TH, and Weinstein JN. An analytical investigation of the mechanics of spinal instrumentation. Spine, 1988,13(9), 1003-1011.【5】Goel VK, Monroe BT, Gilbertson LG, and Brinckmann P. Interlaminar shear stresses and laminae separation in a disc. Spine, 1995, 20(6), 689-698.【6】Kumaresan S, Yoganandan N and Pintar FA. Finite element analysis of the cervical spine: a material property sensitivity study. Clin Biomech, 1999, 14, 41-53.【7】Maurel N, Lavaste F and Skalli W. A three-dimensional parameterized finite element model of the lower cervical spine. Study of the influence of the posterior articular facets. J Biomech, 1997, 30(9), 921-931.【8】Yoganandan N, Kumaresan SC, Voo L, Pintar FA and Larson SJ. Finite element modeling of the C4-C6 cervical spine unit. Med Eng Phys, 1996, 18(7), 569-574【9】Wang JL, Parnianpour M, Shirazi-Adl A and Engin AE. Failure criterion of collagen fiber: Viscoelastic behavior simulated by using load control data. Theor Appl Fract Mec, 1997, 27, 1-12.【10】Wang JL, Parnianpour M, Shirazi-Adl A, Engin AE, Li S and Patwardhan A. Development and validation of a viscoelastic finite element model of an L2/L3 motion segment. Theor Appl Fract Mec, 1997, 28, 81-93.【11】Kaneda K, Asano S, Hashimoto T, Satoh S, and Fujiya M. The treatment of osteoporotic-posttraumatic vertebral collapse using the Kaneda device and a bioactive ceramic vertebral prosthesis. Spine, 1992, 17(8s), 295-303.【12】Yoganandan N, Pintar FA, Maiman DJ, Cusick JF, Sances Jr A and Walsh PR. Human head-neck biomechanics under axial tension. Med Eng Phys, 1996, 18(4), 289-294.【13】Rohlmann A, Riley LH, Bergmann G. and Graichen F. In vitro load measurement using an instrumented spinal fixation device. Med Eng Phys, 1996, 18, 485-488.【14】Rohlmann A, Bergmann G, Graaichen F and Weber U. Comparison of loads on internal spinal fixation devices measured in vitro and in vivo. Med Eng Phy, 1997, 19(6), 539-546.【15】Rohlmann A, Bergmann G, and Graichen F. Loads on internal spinal fixators measured in different body positions. Eur Spine J, 1999, 8, 354-359.【16】Calisse J, Rohlmann A, and Bergmann G. Estimation of trunk muscle force using the finite element method and in vivo loads measured by telemeterized internal spinal fixation devices. J. Biomech, 1999, 32, 727-731.【17】Zander T, Rohlmann A, Calisse J, Bergmann G. Estimation of muscle forces in the lumbar spine during upper-body inclination. Clin Biomech, 2001, 1, s73-s80.【18】Liu CL, Chen HH, Cheng CK, Kao HC and Lo WH. Biomechanical evaluation of a new anterior apinal implant. Clin Biomech, 1998, 13(1s), S40-45.【19】Shea M, Edwards WT, White AA and Hayes WC. Variations of stiffness and strength along the human cervical spine. J. Biomech, 1991, 24(2), 95-107.【20】Belkoff SM, Maroney M, Fenton DC and Mathis JM. An in vitro biomechanical evaluation of bone cements used in percutaneous verbroplasty. Bone, 1999, 25(2s), 23s-26s.【21】Lund T, Oxland TR, Jost B, Cripton P, Grassmann S, Etter C and Nolte LP. Interbody cage stabilisation in the lumbar spine. J Bone Joint Surg, 1998, 80-B, 351-359.【22】Matge G. Anterior Interbody fusion with the BAK-cage in cervical spondylosis. Acta Neurochir, 1998, 140, 1-8.【23】Goel VK, and Gilbertson LG. Basic science of spinal instrumentation. Clin Orthop Relat R, 1997, 335, 10-31.【24】Rohlmann A, Bergmann G, Graichen F and Mayer HM Placing a bone graft more posteriorly may reduce the risk of pedicle screw breakage: analysis of an unexpected case of pedicle screw breakage. J. Biomech, 1998, 31, 763-767.【25】Lowery GL, Kulkarni S, and Pennisi AE. Use of autologous growth factors in lumbar spinal fusion. Bone, 1999, 25(2s), 47S-50S.【26】Onan AO, Hipp JA and Heggeness MH. Use of computed tomography image processing for mapping of human cervical facet surface geometry. Med Eng Phy, 1998, 20, 77-81.【27】Yoganandan N, Pintar F, Wilson CR, and Sances Jr A. In vitro biomechamical study of female geriatric cervical vertebral bodies. J Biomed Eng, 1990, 12, .【28】Tortora GJ. Human Anatomy. Seven edition, Harper Collins. 【29】Hall SJ. Basic biomechanics. Second edition, Brown and Benchma.【30】Schultz AB and Ashton-Miller JA. Biomechanics of the Human spine. Basic orthopaedics, Van C. Mow and Wilson C. Hayes, Raven Press, Ltd., New York, 1991.【31】Astley RJ. Finite element in solids and structures. Chapman and Hall.【32】莊舜弘.(2000)正常足部之三維動態有限元素分析,中原大學醫學工程所碩士論文。【33】McMahon C and Browne J. CADCAM. 2nd edition. Addison Wesley.【34】Adams MA, McMillan DW, and Dolan P. Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine, 1996, 21(4) 434-438.【35】Adams MA, and Dolan P. Recent advances in lumbar spinal mechanics and their clinical significance. 1995, 10(1), 3-19.【36】陳守義,張志涵,林瑞模。J. Medical and Biological Engineering. 2001, 21(3), 175-182.【37】Tai CL, Huang TJ, Chen WP, and Hsu WWR. The influence of vertebral screws fixation on the stability of anterior spinal instrumentation- an experimental study. ISB, 2001.【38】Ryan JL, Natarajan RN, and Andersson GBJ. 47th Annual Meeting, Orthopaedic Research Society, 2001.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top