(3.238.186.43) 您好!臺灣時間:2021/03/02 10:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:趙一平
研究生(外文):Yi-Ping Chao
論文名稱:肺臟斷層影像之電腦輔助分析
論文名稱(外文):Computer-aided Quantification for The CT Image of Lung
指導教授:蘇振隆蘇振隆引用關係
指導教授(外文):Jenn-Lung Su
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:93
中文關鍵詞:肺功能參數三維影像斷層掃瞄影像
外文關鍵詞:LungThree-dimensionComputed TomographyPulmonary function parameter
相關次數:
  • 被引用被引用:7
  • 點閱點閱:232
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:2
高解析度的胸部電腦斷層(computed tomography, CT)影像對於胸部影像及解剖學提供了三維的了解,對於各種不同肺臟實質的病變,提供了臨床診斷的依據、處置疾病的方向與追蹤疾病的變化。本研究發展一肺臟CT影像肺功能參數擷取系統,能夠提供臨床上診斷決策所需之輔助參數。
系統透過擷取肺部DICOM影像直接進行分析,針對不同厚度影像採用不同閥值來選取出肺部區域,並進行半自動邊緣選取、去除雜訊、區域成長、Ray-casting、Voxel-highlight等影像處理函式來分析出肺活量、氣管壁厚度、氣管截面積、肺氣腫程度參數及氣管走向及角度。此外,也配合OpenGL API及Marching cube演算法表現出肺部Surface render三維影像,提供解剖學上之需要。研究中使用玻璃管假體及影像假體來測試系統參數的正確性,並對於正常者及病患的肺部CT影像實際進行分析探討。
假體測試評估中均證實參數之正確性後,研究便針對正常人及病患之CT影像進行分析。在實際肺活量參數方面,將程式計算值與傳統肺功能檢查結果比較所得R.R參數為0.910,其相關性不高的原因在於測量姿勢的不同及部分體績效應等因素所造成;對於正常人及支氣管擴張病患的”氣管截面積/氣管厚度”參數進行比較,經T-test統計之結果,其p值均小於0.05可知,利用此參數可以正確診斷出支氣管擴張及氣喘之病患;在BI參數研究上則是針對肺氣腫病患與正常人的1mm厚度影像進行分析,結果顯示計算BI參數時所呈現的class 3 及class 4部分對於肺氣腫的偵測相當重要,經過T-test統計方式所得P值均小於0.05,因此可以利用class 3及class 4的點數及比例判斷是否患有肺氣腫,並透過BI參數來對於肺氣腫程度進行量化。
本研究之完成能夠提供三維肺部影像暨肺功能參數分析系統,並能實際運用於肺部疾病的診斷上,透過開發之程式進行指標性參數擷取,並且配合三維成像概念來顯示出病灶處及空間關係。未來也可針對病患影像加以收集並擷取參數至資料庫內,透過資料探索及分析技術來輔助臨床上之肺部疾病診斷。
In clinical, high-resolution chest computed tomography(CT) image can supports three-dimensional(3D) viewpoint and understanding in anatomy. According to the image texture, it could give the basics of clinical decision and the directions. Thus it could deal with pulmonary diseases and the changes of disease’s transfer. In this thesis, we developed a system which could acquire the pulmonary function parameters from chest spiral CT image sets and helped physician using those to make decisions in clinical diagnosis.
The system read serial chest CT DICOM image sets directly for analysis and used different threshold to process different thickness of the image slice that could separate the lung area from that. The semi-automatic image segmentation technology was used for this system were adopted masks to reduce the noise and image processing functions were used to analysis image and find the pulmonary function parameters. The image processing functions included Region-grow, Ray-casting, and Voxel-highlighting technology. The pulmonary function parameters included lung capacity, the thickness of airway tree, the lumen of airway tree, bullae index (BI), and the angle and direction of airway tree. Besides, this system could show 3D surface render image which composed of the OpenGL API and Marching cube algorithm, was needed in anatomy. Finally, this system could analysis phantom image, normal and patient image. The accuracy and the applicability of system parameter also were evaluated.
By the result, the accuracy of system could be evaluated by using the phantom image. Applying this system to analysis normal and patient image could get following results. Firstly, the R.R value in lung capacity was 0.910 between the traditional lung function test and system calculated, was low as a result of the different of the pose in measure and the effort of partial volume. Secondly, the p-value in t-test of the “airway lumen /airway thickness” parameter which compared by the normal and Chronic Obstructive Pulmonary Disease (COPD) patient was lower than 0.05. Finally, the BI index could present the class 3 and class 4 parts were important for detecting the degree of emphysema. Because the p-value was lower than 0.05, it showed number of point and percent of class 3 and class 4 could distinguish between normal and patient also provided the quantification in the degree of emphysema.
This research could provide a system to complete the 3D object reconstructed and pulmonary function parameters acquired which could be applied the clinical application to diagnose the lung disease. In the further, the system might combine with the database, and then using the data mining and other analysis technology assist the clinical applications.
摘要Ⅰ
AbstractⅢ
謝誌Ⅴ
目錄Ⅵ
圖索引Ⅷ
表索引Ⅹ

第一章 緒論1
1-1前言1
1-2研究背景1
1-3文獻回顧3
1-4研究目的5
1-5 論文架構6
第二章 理論基礎7
2-1 CT影像介紹7
2-1.1 DICOM影像簡述8
2-2 肺臟生理學9
2-2.1肺臟解剖學及生理學9
2-2.2 傳統肺功能檢查10
2-2.3 肺臟病理學及其影像特徵12
2-2.3.1 肺氣腫12
2-2.3.2 氣喘15
2-2.3.3 慢性阻塞性肺疾(Chronic Obstructive Pulmonary Disease, COPD)17
2-3 影像處理技術19
2-3.1 影像分割技術19
2-3.1.1 邊緣檢測19
2-3.1.2 細線化20
2-3.1.3 雜訊去除21
2-3.2 區域成長21
2-3.3 Ray-casting22
2-3.4 Voxel-highlight23
2-4 三維成像原理23
2-4.1 物件表現方式24
2-4.2 三角形產生方式26
2-4.3 電腦三維繪圖函式庫26
第三章 研究架構及方法27
3-1 影像材料27
3-2研究流程28
3-3 研究設備29
3-4 研究方法30
3-4.1 二維影像分析30
3-4.2 三維物件成像及顯示32
3-4.3 肺功能參數分析32
3-4.3.1肺部容積、肺活量、組織大小33
3-4.3.2 氣管壁厚度34
3-4.3.3 氣管截面積36
3-4.3.4 肺氣腫程度量化參數36
3-4.3.5 氣管中心及角度39
3-5系統評估模式39
3-5.1 評估假體介紹39
3-5.2參數評估方式41
第四章 結果與討論42
4-1肺臟CT影像參數擷取系統介面42
4-2 系統正確性評估49
4-2.1 DICOM影像讀取49
4-2.2 參數正確性評估結果52
4-2.2.1 三維物件體積估算52
4-2.2.2 氣管壁厚度54
4-2.2.3 氣管截面積56
4-2.2.4 氣管走向及角度58
4-3 實際分析結果及病理探討59
4-3.1 肺活量59
4-3.2 氣管壁厚度與截面積62
4-3.3 肺氣腫程度參數68
4-3.4 氣管走向及角度70
4-4 與其他研究比較的結果72
第五章 結論與未來展望75
5-1結論75
5-2 未來展望76
參考文獻78
參考文獻[1] N.L. Muller, R.R Miller, ”Diseaes of the bronchioles: CT and histopathologic findings.” Radiology 1995;196:3-12.[2] W.R. Webb ,“Radiology of obstructive pulmonary disease”. AJR 1997;169:637-647.[3] M.T. Wu, J.M. Chang, A.A. Chiang, ”Use of quantitative CT to predict postoperative lung function in patients with lung cancer.”,Radiology 1994;191:257-262.[4] W.R. Webb, N.L. Muller, Naidich, High-Resolution CT of The Lung, 3rd editon. Lippincott, Philadelphia, 2001.[5] K.T. Bae, R.M. Slone, and D.S Gierada, ”Patients with emphysema: quantitative Ct analysis before and after lung volume reduction surgery.”, Radiology 1997;203:705-714.[6] H.U. Kauczor, C.P. Heussel, and B. Fischer, ”Assessment of lung volumes using helical CT at inspiration and expiration: comparison with pulmonary function tests.”, AJR 1998:171:1091-1095.[7] M. Sonka, W. Park, and E.A. Hoffman, “Rule-based detection of intrathoracic airway trees”,IEEE Transaction on Medical Imaging, , JUNE 1996 15:3:314-326.[8] T. Tozaki, Y. Kawata, and N.Niki, ”Pulmonary organs analysis for differential diagnosis based on thoracic thin-section CT images”,IEEE Transaction on Nulclear Science, December 1998 45:6:3075-3082.[9] Y. Kawata, N. Niki, and H. Ohmatsu, ”Quantitative surface characterization of pulmonary nildules based on thin-section ct images”,IEEE Transactions on Nuclear Science, August 1998 45:4:2132-2138.[10] W. Park, E.A. Hoffman, and M. Sonka, ”Segmentation of intrathoracic airway trees: A fuzzy logic approach”, IEEE Transactions on Medical Imaging, August 1998 17:4:489-497.[11] M.S. Brown, M.G. Micheal, and G.G. Jonathan, ”Automated measurement of single and total lung volume from CT”, Journal of Computer Assisted Tomography, 1998 23:4:632-640.[12] F. Chabat, X.P. Hu, D.M. Hansell, and G.Z. Yang, “ERS transform for the automated detection of bronchial abnormalities on CT of the lungs”, IEEE Transactions on Medical Imaging, September 2001 20:9:942-952.[13] R. A. Blechschmidt, R.Werthschutzky, and U. Lorcher, “Automated CT image evaluation of the lung: a morpgology-based concept”, IEEE Transactions on medical imaging, May 2001 20:5:434-442.[14] K. T. Heang and T. T. Lee, “Direct 2D display of 3D object”, IEEE Computer Graphics and Application, 1984 pp.1-7.[15] A. B. Strong, Lobregt and F. W. Zonneveld, “Applications of three-dimensional display techniques in medical imageing”, Journal of Biomedical Engineering, 1990 12:233-238.[16] M. S. Brown, M. F. McNitt-Gray, and N. J. Mankovich, “Method for segmenting chest CT image data using an anatomical model: preminary results”, IEEE Transactions on Medical Imaging, 1997 16:6:828-839.[17] 蘇順華,建立以個人電腦為基礎的三維重建及影像系統,中原大學醫學工程研究所碩士論文,中壢,民國83年[18] 楊建宏,醫學影像處理系統之設計與應用,台灣大學電機工程研究所碩士論文,台北,民國84年[19] 郭吉健,全球資訊網上操作容積的虛擬實境系統,中原大學資訊工程研究所碩士論文,中壢,民國87年[20] 楊順聰,臨床高等醫療儀器系統-原理與應用,藝軒圖書出版社,台北,民國87年3月[21] 蔡宗憲,超音波診斷儀與Internet結合之研究,中原大學醫學工程研究所碩士論文,中壢,民國89年[22] 邱健泰、王仲祺等譯,影像診斷學,藝軒圖書出版社,台北,民國90年3月[23] 林靜靜,肺病診療室,天下遠見出版股份有限公司,台北,民國90年5月[24] 肺功能檢查,http://www.ch.com.tw/doc-17B.htm,民國91年6月[25] 肺功能檢查,http://www.cgmh.com.tw/intr/intr2/c313b/pft.html,民國91年5月[26] 陳文顯、郭啟泰譯,肺-臨床生理與肺之功能實驗,合記圖書出版社,台北,民國71年6月[27] 胡明一、謝慧瑛等譯,人體解剖學,藝軒圖書出版社,台北,民國89年2月[28] 影學影像之門,http://www.xraydoor.com/image/huxi/feibu/fqz.htm民國91年6月[29] 氣喘照護手冊,http://gaia.org.tw/air/asthma/,民國91年6月[30] 簡介氣喘,http://www.wedar.com/library/allergy.htm,民國91年6月[31] 台北市立忠孝醫院-COPD臨床處理及治療,http://www.tmcsh.gov.tw/drug010.htm,民國91年5月[32] 吳成柯、戴善榮等譯,數位影像處理,儒林出版社,台北,民國87年[33] 林宸生,數位信號-影像與語音處理,全華出版社,台北,民國86年12月[34] N. D.D’Souza, J.M. Reinhardt, and E.A. Hoffman, “ASAP: Interactive quantification of 2D airway geometry”, Proc. SPIE Conference Medical Imaging, 1996 Feb 10-15 2709:180-196.[35] 張財榮,使用VRML軟體元件之3D醫學影像模型重構技術的研究與應用,成功大學電機工程研究所碩士論文,台南,民國88年[36] 黃郡基,以個人電腦為基礎之三維重建及影像處理系統,中原大學醫學工程研究所碩士論文,中壢,民國87年[37] M. Woo, J. Neider and T. Davis, OpenGL Programming Guide third Edition, Massachusetts, Addison-wesley 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔