(3.238.7.202) 您好!臺灣時間:2021/03/02 00:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:涂清源
研究生(外文):Chin-Yuan Tu
論文名稱:建構無線傳輸與網際網路之居家看護系統
論文名稱(外文):Development of Home-care System Using RF Transceiver and Internet
指導教授:徐良育徐良育引用關係
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:91
中文關鍵詞:微控制器射頻收發器居家看護網路傳輸
外文關鍵詞:home-careinternet transmissionmicro-controllertransceiver
相關次數:
  • 被引用被引用:36
  • 點閱點閱:533
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:136
  • 收藏至我的研究室書目清單書目收藏:4
鑑於台灣人口結構趨於高齡化之現象,老人居家安養成為社會即將面臨的一項難題。對於居家老人而言,定期往返醫療單位之例行檢查工作,不但造成舟車勞頓之苦,同時對於突發狀況,無法即時獲得諮詢與評估。因此若能發展一套活用於居家環境之看護系統,即可提供完善與便捷之醫療服務,充分運用現有之醫療資源。
本研究所研發之居家看護系統,主要包含生理訊號擷取、無線傳輸、訊號處理、資料庫建立與網路傳輸等方面。在生理訊號擷取方面,利用電極取得心電圖訊號,經由增益為570倍的放大與截止頻寬為0.5∼100Hz之濾波處理,以獲得完整之訊號波形。另一方面,利用MSP430F148微控制器與TRF6900射頻收發器構成無線傳輸與數位轉換模組。將訊號作類比/數位轉換後,即可包裝為資料封包,由射頻收發器於高頻頻帶傳送;接收端亦用相同通訊協定收集傳送封包,並且透過RS232介面傳輸至個人電腦進行分析、處理與儲存之工作。在個人電腦中,除了繪製接收之生理訊號波形,並且針對訊號作特徵化處理,計算生理參數,以評估受測者生理狀況。受測過程之同時,亦可建立網路連結,利用winsock應用程式與遠端伺服器建立通道,進行訊號之傳送。待資料接收與處理完畢後,隨即儲存檔案於Access資料庫中,作為長期生理狀況之記錄與追蹤。
實驗結果方面,在無線傳輸效能評估上,於有效距離7公尺內可達100%之正確率,封包遺失率則為6.83%,傳輸率亦可達38400 bps,提供精確可信之即時傳輸。然而,實驗結果發現訓練序列長度與封包遺失率及採樣率成反比;若減短訓練序列長度則產生封包遺失率提高之情況,此現象可於後續發展的系統中利用外部A/D加以改善。評估網路傳輸方面,傳輸速率為0.5 Kbps,傳輸正確率亦可達98.99%,滿足網路可信度之要求。目前系統之網路傳輸率過低,對於即時性之目標仍有一段差距,為系統未來需探討與修訂之處。
Due to the increase of aging population in Taiwan, taking care of elderly will become a social problem we will face in the coming century. The routine medical checkups not only cause weariness for elderly to make the trip but also cannot provide real-time consultation and medical assessment. Thus, a home-care system is proposed to provide monitoring service in order to take full advantage of existing medical resource.
In this study, the proposed system consists of signal acquisition, radio frequency (RF) transmission, signal processing, internet communication and database modules. The ECG signal is amplified and filtered in the signal acquisition module. The total gain of ECG amplifier is 570 and the filter bandwidth is from 0.5 to 100 Hz. The RF transmission module is consist of MSP430F148 micro-controller and TRF6900 RF transceiver. The bio-signal is digitized by the built-in analog-to-digital converter (ADC) in the micro-controller and organized into a data package. As soon as the package is established, it is sent by the transceiver using the high-frequency band. On the receiver side, it utilizes the same communication protocol to extract signals from the received package. Data is then passed to the personal computer (PC) through the RS232 interface, on the receiving side, for signal processing, analysis and storage. In addition to waveforms display, the PC processes the acquired signals and obtains biological parameters such as heart rate for evaluating user’s physical condition. At the same time, the application program on the PC can establish internet connection with the remote server in the hospital. After processing, data is saved in the Access database for long-term physical condition monitoring.
The results indicate that the effective range of the RF transmission module is 7 meters with accuracy of 100%. In this range, the package missing rate is 6.83% and the transmission rate is 38400bps. This demonstrates that the RF module can provide reliable real-time transmission. However, it is found that the length of training sequence during package transmission is inverse proportional to signal sampling rate and package missing rate. The shorter the training sequence is the higher the package missing rate is. The trade-off between package missing rate and sampling rate can be resolved by external ADC in the future. The results of internet transmission evaluation indicate that the transmission rate is 0.5 kbps with 98.99% accuracy which is satisfactory for a reliable internet transmission. However, the transmission rate is too low for real-time purpose. Thus, it is necessary to increase the transmission rate in the future.
摘要…………………………………………………………………… Ⅰ
Abstract……………………………………………………………… Ⅲ
謝誌…………………………………………………………………… Ⅴ
目錄…………………………………………………………………… Ⅵ
圖表索引……………………………………………………………… Ⅷ
圖索引……………………………………………………………… Ⅷ
表索引……………………………………………………………… XI
第一章 緒論…………………………………………………………… 1
1-1 前言…………………………………………………………… 1
1-2 目的…………………………………………………………… 2
1-3 論文架構……………………………………………………… 3
第二章 研究背景與原理……………………………………………… 4
2-1 文獻回顧……………………………………………………… 4
2-2 生理背景簡介………………………………………………… 7
2-2.1 心電圖簡介……………………………………………… 7
2-3 微控制器……………………………………………………… 9
2-4 發展環境與工具程式………………………………………… 13
2-5 射頻收發器…………………………………………………… 15
2-6 電腦網路通訊………………………………………………… 19
第三章 系統架構與方法…………………………………………… 22
3-1 實驗設計……………………………………………………… 23
3-2 系統硬體架構………………………………………………… 24
3-2.1 心電圖訊號擷取放大及濾波線路……………………… 25
3-2.2 無線傳輸模組…………………………………………… 26
3-2.3 電源供應模組…………………………………………… 30
3-3 系統軟體架構………………………………………………… 31
3-3.1 無線傳輸模組之控制…………………………………… 33
3-3.2 心電圖訊號處理………………………………………… 38
3-3.3 資料庫建立……………………………………………… 40
3-3.4 網路連線建立…………………………………………… 41
第四章 實驗結果與討論…………………………………………… 43
4-1硬體測試結果………………………………………………… 43
4-1.1 心電圖訊號擷取模組…………………………………… 43
4-1.2 無線傳輸模組…………………………………………… 45
4-1.3 電源供應模組…………………………………………… 48
4-1.4 系統整合………………………………………………… 49
4-2 軟體測試結果………………………………………………… 52
4-2.1 RS232介面/用戶端程式與伺服端程式測試結果……… 53
4-2.2 心電圖訊號處理程式測試結果………………………… 58
4-2.3 資料庫程式測試結果…………………………………… 60
4-3 討論…………………………………………………………… 62
第五章 結論與未來展望…………………………………………… 65
參考文獻 …………………………………………………………… 67
附錄A 無線傳輸模組控制程式之部分整理………………………… 69
附錄B 系統各個模組之設計電路圖………………………………… 72
附錄C 網路傳輸之測試樣本………………………………………… 76
[1] H. Murakami, K. Shimizu, K. Yamamoto, T. Mikami, N. Hoshimiya, and K. Kondo, “Telemedicine Using Mobile Satellite Communication”, IEEE Transactions on Biomedical Engineering, VOL. 41, NO.5, May 1994[2] J. Bai, Y. Zhang, D. Shen, L. Wen, C. Ding, Z. Cui, F. Tian, B. Yu, B. Dai, J. Zhang, “A Portable ECG and Blood Pressure Telemonitoring System”, IEEE Engineering in Medicine and Biology, July/August 1999[3] B. Woodward, R. S. H. Istepanian, and C. I. Richards, “Design of a Telemedicine System Using a Mobile Telephone”, IEEE Transactions on Information Technology in Biomedicine, VOL. 5, NO. 1, March 2001[4] K. Shimizu, “Telemedicine by Mobile Communication”, IEEE Engineering in Medicine and Biology, July/August 1999[5] A.I. Hernández, F. Mora, G. Villegas, G. Passariello, and G. Carrault, “Real-Time ECG Transmission Via Internet for Nonclinical Applications”, IEEE Transactions on Information Technology in Biomedicine, VOL.5, NO.3, September 2001[6] R. Carola, J. P. Harley, C. R. Nobeack 原著, 李玉菁,何杏棻,黃玉琪,陳秋媛,李莉珍,阮大盛,徐玉華 編譯, “ 人體解剖學 ”, 文京圖書有限公司, 1996年6月[7] Dale Davis 原著, 黃天宇,陳清輝 編譯, “ 基本心電圖判讀 ”,眾文圖書股份有限公司[8] J.G. Webster, “ Medical instrument application and design ”, Houghton Mifflin Company, USA, 1992[9] Texas Instruments, “MSP430x1xx Family User Guide”, 2000[10] Texas Instrument, “TRF6900 Single-Chip RF Transceiver Data Sheet”, 2000[11] Burr-Brown Company, “INA128 Data Sheet”, 1996.[12] Linear Technology, “LTC1386 Data Sheet”,1994[13] Texas Instrument, “Implementing a Bidirectional, Half-Duplex FSK RF Link With TRF6900 and MSP430”, 2001[14] J. Pan and W.J. Tompkins, “A real-time QRS detection algorithm”, IEEE transactions on bio-medical engineering. Vol.32, NO.3, pp.230-236, 1985[15] 李維倫, “利用即時心率變異度評估麻醉深度”, 民國九十年六月[16] 趙克立 策劃, “Access 2000 學習手冊中文版”, □峰資訊股份有限公司, 2000[17] 楊宗誌 編著, “C++ Builder 資料庫程式設計”, 文魁資訊股份有限公司, 2001[18] 黃家輝 編著, ”C++ Builder 揭開互助社群軟體-Napster的秘密 Internet與TCP/IP進階程式設計”, 文魁資訊股份有限公司, 2001[19] W.F. Ganong 原著, 白禮源等 編譯,“甘龍-醫用生理學(下)”, 藝軒圖書出版社, pp.625-626, 1986[20] 吳映萱, ”利用小波轉換以及模糊類神經網路進行霍特式心電圖之病症分類”, 民國87年六月[21] S.Jalaeddine, C.Hutchens, R.Strattan, and W. Coberly, “ECG data compression techniques-A unified approach,” IEEE Trans. Biomed. Eng., vol.37, pp.329-343, Apr.1990
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔