跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 15:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江智勝
研究生(外文):Chi-Sheng Jiang
論文名稱:手部動作辨識語音系統之研究
論文名稱(外文):Speech Production System for Hank Motion Identification
指導教授:徐良育徐良育引用關係
指導教授(外文):Liang-Yu Shyu
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:71
中文關鍵詞:多脈衝激勵線性預測編碼聽障類神經網路主動電極
外文關鍵詞:multi-pulse linear predictive codinghearing impairedactive electrodeartificial neuron network
相關次數:
  • 被引用被引用:10
  • 點閱點閱:362
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:2
在日常生活上,聽障人士僅能運用手語、唇語,或是利用紙筆作為溝通的工具。至今,針對聽障人士仍無一個有效的輔具來改善溝通上的不便。因此,建構一可攜式的手部動作轉語音系統,消除聽障人士溝通上的困難,為本研究主要的目的。

本研究在語音模組中先利用Labview圖控操作軟體中的錄音程式,以8kHz的採樣率、16bit的形式將語音訊號擷取出,再以多脈衝激勵線性預測編碼(MPLPC)壓縮編碼,再將編碼訊息與語音程式結合存放於語音合成晶片(SPDS105A)中;控制模組中利用七通道肌電訊號擷取系統由MSP430F148內建之A/D,擷取手前臂肌電訊號,並透過三種基本特徵值處理,正規化後經前向式類神經網路辨識,同時將結果輸出至語音模組。系統測試實驗中,定義了7種手部動作,對象為四男二女,平均年齡23±2歲,測試時使測試者坐著,以右手配戴主動電極腕帶,每種手部動作重複作十次與二十次。本研究分別Matlab及 MSP430F148進行辨識,當一半為訓練樣本,一半當為測試樣本時,Matlab方式的辨識結果為77.13﹪及87.85﹪,而MSP430F148的辨識結果為64.75﹪及70.28﹪,兩種方式結果顯示,訓練樣本愈多,辨識率愈高;另一方面,Matlab離線分析的辨識率都比MSP430F148辨識率高,顯示定點數的運算使類神經網路產生較大的誤差,造成辨識率降低;另一方面系統手部動作即時辨識,辨識率只有32.86﹪,歸納原因有前向式類神經網路無學習的能力、電極產生位移、人為因素、MSP430F148運算精確度。

整體而言,本系統已有初步的系統架構,但本系統手部動作辨識率仍不足,這其中有許多問題尚待解決,包含電極重新設計,在單晶片上實現倒傳遞神經網路,相信對於系統的辨識率能大大的提升。
The hearing impaired person can make use of sign language, lip reading or paper and pen as tools to communicate with other. Until now, there is still no effective tool to improve their communication ability. Thus, to develop a portable system to translate hand motions into speech is the goal of this study.

In the voice module, the speech is digitized using Labview voice recording program with a sampling rate of 8000Hz and 16-bits format. The digitized speech is then coded using multi-pulse linear predictive coding (MPLPC) and programmed into speech synthesis chip (SPDS105A). In control module, using seven-channel EMG acquisition system and the build-in analog-to-digital converter in the MSP430F148, the forearm EMG signals are acquired. EMG characteristics are obtained using three feature extraction methods and normalized before inputted into the forward neuron network for identification. In the same time, the result is outputted to the voice module. To evaluate the proposed system, seven hand motions are defined. Six subjects are recruited including four male and two female. The average age is 23±2. During the experiment, subject sits in a chair and wearing the active electrodes for EMG measurement in their right arm. Every designated hand motions are repeated for 10 or 20 times. Both Matlab method and MSP430F148 are used for classification. When half of the EMG signals are used for network training and the other half are used for testing, the results of classification using Matlab are 77.13﹪and 87.85﹪. On the other hand, the results of classification using MSP430F148 are 64.75﹪and 70.28﹪. The results indicates that the more the training samples are the better the classification. On the other hand, the results using Matlab methods are better than MSP430F148. This indicates that the fix-point computation in neural network cause error and reduce the rate of classification. Additionally, in the test of real-time classification, the classification rate is 32.86﹪. The reasons for this low percentage may include the lack of learning ability in the forward neuron network that is used in this study, the displacement of electrodes, the error caused by fix-point computation and other human factors.

Although the proposed system has the basic structure, the classification rate for hand motion is still too low. There are still a lot of questions to be resolved including redesigning the active electrode, realizing back-propagation neuron network in the micro-controller. It is believed that with all these improvements the identification rate can be increased.
目 錄

摘要…………………………………………………………………Ⅰ
英文摘要……………………………………………………………Ⅱ
謝誌…………………………………………………………………Ⅳ
目錄…………………………………………………………………Ⅴ
圖索引………………………………………………………………Ⅶ
表索引………………………………………………………………Ⅸ
第一章 緒論……………………………………………………….1
1-1 前言…………………………………………………………..1
1-2 研究目的……………………………………………………..2
1-3 論文架構……………………………………………………..3
第二章 研究背景與原理………………………………………….4
2-1 文獻回顧……………………………………………………..4
2-2 肌電訊號的特性……………………………………………..6
2-2-1 肌電圖………………………………………………......6
2-2-2 肌電訊號特徵值……………………………………......7
2-3 類神經網路…………………………………………………..8
2-3-1 類神經網路簡介……………………………………......8
2-3-2 倒傳遞神經網路…………………………………….....10
2-4 語音壓縮編碼……………………………………………….12
2-5 發展環境與工具程式…..………………………………….14
第三章 研究方法…………………………………………………16
3-1 肌電訊號擷取……………………………………………….17
3-2 硬體架構…………………………………………………….17
3-2-1 語音模組…………………………………………….....17
3-2-2 控制模組…………………………………………….....20
3-3 軟體架構…………………………………………………….25
3-3-1 語音模組…………………………………………….....25
3-3-2 控制模組…………………………………………….....27
3-4 手部動作設計……………………………………………….31
3-5 系統驗證…………………………………………………….32
3-6 實驗設計…………………………………………………….33
第四章 結果與討論………………………………………………35
4-1 硬體測試結果……………………………………………….35
4-1-1 語音模組…………………………………………….....35
4-1-2 控制模組…………………………………………….....36
4-1-3 系統硬體驗證……………………………………….....37
4-2 軟體測試部分……………………………………………….37
4-2-1 語音模組…………………………………………….....37
4-2-2 控制模組…………………………………………….....39
4-3 辨識測試…………………………………………………….41
第五章 結論與未來展望…………………………………………55
參考文獻………………………………………………………….57
附錄……………………………………………………………….59
參考文獻[1]行政院主計處,“台閩地區身心障礙者概況”,國情統計通報民國90年10月[2]S. Pouremehdi, “Microcomputer-based tactile hearing prosthesis,Proceedings of Third Annual IEEE Symposium , pp.117-122,IEEE,1990[3]H. J. Park,“Adptive EMG-driven communication for the disability” Proceedings of the First Joint BMES/EMBS Conference, pp.656,1999[4]K. Katsutoshi, “A Discrimination System Using Neural Network for EMG- controlled Prostheses” , IEEE/RSJ International Conference on Intelligent Robots and Systems ,1993[5]D. Nishikwa, et al, “EMG Prosthetic Hand Controller Discriminating Ten Motions using Real-time Learning Method”, Proceedings of IEEE International Conference on intelligent Robotics and Systems, 1999.[6]L.R. Lin and H.P. Huang, “Mechanism Design of A New Mutifingered Robot Hand”, Proceedings of IEEE International Conference on Robotics and Automation, 1996.[7]H.P. Huang, et al, “Development of a Myoelectric Discrimination System for a Multi-Degree Prosthetic Hand”, Proceedings of IEEE International Conference on Robotics and Automation, 1999.[8]H. P. Huang, et al, “DSP-Based Controller for a Muti-Degree Prosthetic Hand”, Proceedings of IEEE International Conference on Robotics and Automation, pp.1378-1383,2000[9]W. F. Ganong 原著, 白禮源 編譯, “甘龍醫用生理學(上冊)”, 藝軒圖書出版社, 民 國84年10月[10]J.G. Webster, “Medical Instrumentation: application and design”, Jhon Wiley, Cons, INC., 1998[11]焦李成著, “神經網路系統理論”,儒林圖書有限公司,1991年10月[12]田榮雯著, “以FPGA實現倒傳遞類神經網路並應用於肌電圖分類”, 中原大學碩士論 文,2001年6月[13]謝依蘭編著, “語音訊號數位處理”, 松岡電腦圖書資訊股份有限公司,1992年6月[14]Sunplus, Sunplus Ice Data Book, 2000[15]Sunplus, CPU Instruction Manual Data Book, 2000[16]Sunplus, SPDS105A Programing Data Book, 2000[17]Texas Instruments, MSP4304x1xx Family, 2000[18]Texas Instruments, MSP430 Hardware Multiplier Function and Applications, April 1999[19]陳建宇著, “多電極式手部動作辨識系統”, 中原大學碩士論文,2001年6月
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top