跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/20 01:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李國平
研究生(外文):Kuo-Ping Lee
論文名稱:論Black-Scholes模型之穩健性
論文名稱(外文):On the Robust Properties of Black-Scholes Model
指導教授:胡毓彬胡毓彬引用關係
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:財務金融系碩士班
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:81
中文關鍵詞:跳躍擴散模型隨機波動模型笑狀波幅穩健性GARCH選擇權定價模型
外文關鍵詞:Jump-diffusion modelStochastic-volatility modelvolatility smilerobustnessGARCH option pricing model
相關次數:
  • 被引用被引用:4
  • 點閱點閱:591
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
Black and Scholes(1973)在股價服從幾何布朗運動之假設下,提出歐式選擇權定價理論,但由於其理論之完美市場過於嚴格,且資產價格不一定符合幾何布朗運動,此後之學者因而針對其模型中的各種假設進行修正。本研究主要探討修正波動固定假設下的選擇權定價方法,並提出合理的模擬方式分析Black-Scholes模型相對跳躍擴散(Merton(1976))、連續隨機波動(Heston(1993))與離散GARCH選擇權定價模型(Duan(1995))之評價差異,比較其理論價格以瞭解Black-Scholes模型的穩健性。模擬分析結果發現,當存續期間較短且選擇權趨於價外,Black-Scholes模型相對其他波動修正模型之評價誤差較大;而當選擇權到期日增加,抑或標的資產之波動過程受非預期性干擾的成分降低,Black-Scholes模型對價內歐式買權之評價仍具有其穩健性。除此之外,前述修正波動假設下的三種定價模型,對於市場笑狀波幅的現象均具有解釋能力。
Black and Scholes(1973) derived European option pricing model under the assumption of stock prices following the Geometric Brownian motion. But many empirical analyses show that Geometric Brownian motion may not explain the real stock data well. From then, researchers propose some modified models. In this study, we review the option pricing theory of modified volatility models. Also, we propose a simulation method to analyze the differences in pricing of European call between Jump-diffusion model(Merton(1976)), Stochastic-volatility model(Heston(1993)) and GARCH option pricing model(Duan(1995)) with Black-Scholes formula. That means we discuss the robust properties of Black-Scholes framework.
The mainly results are follows. (1) A relatively short time to expiration for out-of-the-money options is indicative of a relatively high pricing differences. (2) As the expiration dates of options are longer or the unexpected shocks in the underlying asset’s volatility processes are lower, Black-Scholes model is still robust for in-the-money options. Otherwise, all the modified volatility models mentioned could explain the phenomenon of volatility smile.
第一章緒論……………………………………………………………1

第二章定價理論與文獻回顧…………………………………………4
第一節無套利定價理論………………………………………………4
第二節Black-Scholes選擇權定價模…………………………………10
第三節波動性估計方法與其他修正模型…………………………16
(一)波動性估計方法…………………………………………………16
(二)波動修正模型……………………………………………………18
1.固定彈性變異模型…………………………………………………18
2.純粹跳躍/跳躍擴散模型…………………………………………19
3.複合選擇權模型……………………………………………………20
4.Displaced擴散模型…………………………………………………20
5.連續隨機波動模型…………………………………………………21
6.離散隨機波動模型…………………………………………………22
7.連續隨機波動、隨機利率與跳躍擴散定價模型…………………23

第三章 波動修正模型之定價理論…………………………………27
第一節 跳躍擴散之選擇權定價模型………………………………27
第二節 連續隨機波動之選擇權定價模型…………………………32
(一)幾何布朗運動之隨機波動過程…………………………………32
(二)算術Ornstein-Uhlenbeck之隨機波動過程………………………34
第三節 離散隨機波動之選擇權定價模型…………………………39
(一)GARCH過程……………………………………………………39
(二)GARCH選擇權定價模型………………………………………40

第四章 選擇權評價之模擬分析……………………………………45
第一節 模擬分析方法………………………………………………45
(一)不同定價模型之隨機過程………………………………………45
1.跳躍擴散過程(JD)…………………………………………………46
2.連續隨機波動過程(SV)……………………………………………46
3.離散隨機波動過程(GARCH)………………………………………46
(二)模擬分析步驟……………………………………………………47
第二節 選擇權評價之模擬結果與分析……………………………49
(一)跳躍擴散過程-JD模擬結果……………………………………49
1.不同存續期間之評價誤差…………………………………………49
2.不同平均跳躍規模之評價誤差……………………………………51
3.不同跳躍波動性之評價誤差………………………………………53
(二)連續隨機波動過程-SV模擬結果………………………………54
1.不同存續期間之評價誤差…………………………………………55
2.不同復歸比率與長期平均變異之評價誤差………………………57
3.不同相關係數之評價誤差…………………………………………59
(三)離散隨機波動過程-GARCH模擬結果…………………………60
1.不同存續期間之評價誤差…………………………………………61
2.不同單位風險貼水之評價誤差……………………………………62
3.不同條件變異結構之評價誤差……………………………………64
模擬分析數據結果…………………………………………………66

第五章結論與建議…………………………………………………73

參考文獻……………………………………………………………76
Ahn, C. M., and Thompson, H. E., 1988, “Jump-Diffusion Processes and the Term Structure of Interest Rates,” Journal of Finance, Vol. 43, No. 1, pp. 155-174.
Akgiray, V., and Booth, G., 1986, “Stock Price Process with Discontinuous Time Paths: An Empirical Examination,” Financial Review, Vol. 21, pp. 163-184.
Amin, K., and Ng, V., 1993, “ARCH Processes and Option Valuation,” Working Paper, University of Michigan.
Amin, K., and Ng, V., 1993, “Option Valuation with Systematic Stochastic Volatility,” Journal of Finance, Vol. 48, pp. 881-910.
Ash, R. B., 2000, Probability and Measure Theory, Second Edition, Academic Press, U.S.A.
Bakshi, G., Cao, C.,and Chen, Z., 2000, “Pricing and Hedging Long-term Options,” Journal of Econometrics, Vol. 94, pp. 277-318.
Bakshi, G., Cao, C.,and Chen, Z., 1997, “Empirical Performance of Alternative Option Pricing Models,” Journal of Finance, Vol. 52, No. 5, pp. 2003-2049.
Ball, C. A., and Roma, A., 1994, “Stochastic Volatility Option Pricing,” Journal of Financial and Quantitative Analysis, Vol. 29, No. 4, pp. 589-607.
Ball, C. A., and Torous, W. N., 1985, “On Jumps in Common Stock Prices and Their Impact on Call Option Pricing,” Journal of Finance, Vol. 40, No.1, pp. 155-173.
Ball, C. A., and Torous, W. N., 1983, “A Simplified Jump Process for Common Stock Returns,” Journal of Financial and Quantitative Analysis, Vol. 18, No.1, pp. 53-66.
Bates, D. S., 1996, “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options,” Review of Financial Studies, Vol. 9, No. 1, pp. 69-107.
Baruer, G. A., 1986, “Using Jump-Diffusion Return Models to Measure Differential Information by Firm Size,” Journal of Financial and Quantitative Analysis, Vol. 21, No. 4, pp.447-458.
Bhattacharya, M., 1980, “Empirical Properties of the Black-Scholes Formula Under Ideal Conditions,” Journal of Financial and Quantitative Analysis, Vol. 15, pp. 1081-1095.
Bjork, T., 1998, Arbitrage Theory in Continuous Time, Oxford University Press, N.Y.
Black, F., and Scholes, M., 1973, “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, Vol. 18, pp. 637-659.
Black, F., 1975, “Fact and Fantasy In the Use of Options,” Journal of Financial Analysis, Vol. 31, pp. 36-41 and 61-72.
Black, F., and Scholes, M., 1972, “The Valuation of Option Contracts and A Test of Market Efficiency.” Journal of Finance, Vol. 27, pp. 399-417.
Bollerslev, T., 1986, “Generalized Autoregressive Conditional Heteroscedasticity,” Journal of Econometrics, Vol. 31, pp. 307-327.
Box, G. E. P., Jenkins, G. M., and Reinsel, G. C., 1994, Time Series Analysis: Forecasting and Control, Third Edition, Prentice-Hall, London.
Boyle, P. P., 1977, “Options: A Monte Carlo Approach,” Journal of Financial Economics, Vol. 4, pp. 323-338.
Breeden, D. T., 1986, “Consumption, Production, Inflation and Interest Rates,” Journal of Financial Econometrics, Vol. 16, pp. 3-39.
Brennan, M., 1979, “The Pricing of Contingent Claims in Discrete Time Models,” Journal of Finance, Vol. 34, No. 1, pp. 53-68.
Cakici, N., and Topyan, K., 2000, “The GARCH Option Pricing Model: a Lattice Approach,” Journal of Computational Finance, Vol. 3, pp. 71-85.
Canina, L., and Figlewski, S., 1993, “The Informational Content of Implied Volatility,” Review of Financial Studies, Vol. 6, No. 3, pp. 659-681.
Chaudhury, M. M., and Wei, J. Z., 1996, “A Comparative Study of the GARCH(1,1) and Black-Scholes Option Prices,” Working Paper, University of Saskatchewan.
Choi, S., and Wohar, M. E., 1994, “S&P 500 Index Option Prices and the Black-Scholes Option Pricing Model,” Applied Financial Economics, Vol. 26, pp. 249-263.
Chrustie, A. A., 1982, “The Stochastic Behavior of Common Stock Variances: Value, Leverage, and Interest Rate Effects,” Journal of Financial Economics, Vol. 10, pp. 407-432.
Clark, P. K., 1973, “A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices,” Econometrica, Vol. 41, pp. 135-155.
Cox, J. C., Ingersoll, J. E., and Ross, S. A., 1985a, “An Intertemporal General Equilibrium Model of Asset Prices,” Econometrica, Vol. 53, No. 2, pp. 363-384.
Cox, J. C., Ross, S. A., and Rubinstein, M., 1979, “Option Pricing: A Simplified Approach,” Journal of Financial Economics, Vol. 7, pp. 229-264.
Cox, J. C., and Ross, S. A., 1976, “A Survey of Some New Results In Financial Option Pricing Theory,” Journal of Finance, Vol. 31, No. 2, pp. 145-166.
Cox, J. C., and Ross, S. A., 1976, “The Valuation of Options for Alternative Stochastic Processes,” Journal of Financial Economics, Vol. 3, pp. 145-166.
Das, S. R., and Sundaram, R. K., 1999, “Of Smile and Smirks: A Term Structure Perspective,” Journal of Financial and Quantitative Analysis, Vol. 34, No. 2, pp. 211-239.
Day, T. E., and Lewis, C. M., 1992, “Stock Market Volatility and the Information Content of Stock Index Options,” Journal of Econometrics, Vol. 52, pp. 267-287.
Derman, E., Kani, I., and Chriss, N., 1996, “Implied Trinomial Trees of the Volatility Smile,” Journal of Derivatives, Vol. 3, pp. 7-22.
Duan, J. C., and Wei, J. Z., 1999, “Pricing Foreign Currency and Cross-Currency Options Under GARCH,” Journal of Derivatives, Vol. 3, pp. 51-63.
Duan, J. C., 1997, “Augmented GARCH(p,q) Process and Its Diffusion Limit,” Journal of Econometrics, Vol. 79, pp. 97-127.
Duan, J. C., 1995, “The GARCH Option Pricing Model,” Mathematical Finance, Vol. 5, No. 1, pp. 13-32.
Eisenberg, L. K., and Jarrow, R. A., 1994, “Option Pricing with Random Volatilities in Complete Markets,” Review of Quantitative Finance and Accounting, Vol. 4, pp. 5-17.
Engle, R. F., and Mustafa, C., 1992, “Implied ARCH Models from Option Prices,” Journal of Econometrics, Vol. 52, pp. 289-311.
Engle, R. F., 1982, “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50, No. 4, pp. 987-1007.
Finnerty, J. E., 1978, “The Chicago Boards Options Exchange and Market Efficiency,” Journal of Financial and Quantitative Analysis, Vol. 13, pp. 29-38.
Fleming, J., 1998, “The Quality of Market Volatility Forecasts Implied by S&P 500 Index Options Prices,” Journal of Empirical Finance, Vol. 5, pp. 317-345.
Galai, D., 1977, “Tests of Market Efficiency of the Chicago Board of Option Exchange,” Journal of Business, April, pp. 167-197.
Gemmill, G., 1986, “How Useful Are Implied Distributions? Evidence from Stock Index Options,” Journal of Derivatives, Vol. 7, No. 3, pp. 83-96.
Geske, R., 1979, “The Valuation of Compound Options,” Journal of Financial Econometrics, Vol. 7, pp. 63-81.
Gultekin, B., Rogalski, R., and Tinic, S., 1982, “Option Pricing Model Estimates: Some Empirical Results,” Financial Management, Vol. 11, pp. 58-69.
Heston, S. L., 1993, “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Option,” Review of Financial Studies, Vol. 6, No. 2, pp. 327-343.
Heston, S. L., and Nandi, S., 2000, “A Closed-Form GARCH Option Valuation Model,” Review of Financial Studies, Vol. 13, pp. 585-625.
Hull, J. C., 2000, Options, Futures, and Other Derivatives, Fourth Edition, Prentice-Hall, Upper Saddle River, N.J.
Hull, J., and White, A., 1993, “One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities,” Journal of Financial and Quantitative Analysis, Vol. 28, No. 2, pp. 235-254.
Hull, J., and White, A., 1987, “The Pricing of Options on Assets with Stochastic Volatilities,” Journal of Finance, Vol. 42, No. 2, pp. 281-300.
Jarrow, R. A., and Rosenfeld, E. R., 1984, “Jump Risks and the Intertemporal Captial Asset Pricing Model,” Journal of Business, Vol. 57, pp. 337-351.
Johnson, H., and Shanno, D., 1987, “Option Pricing When the Variance Is Changing,” Journal of Financial and Quantitative Analysis, Vol. 22, No. 2, pp. 143-153.
Jones, E. P., 1984, “Option Arbitrage and Strategy with Large Price Changes,” Journal of Financial Economics, Vol. 13, pp. 91-114.
Jordan, J. V., Seale, W. E., McCabe, N. C., and Kenyon, D. E., 1987, “Transactions Data Tests of the Black-Scholes Model for Soybean Future Options,” Journal of Futures Markets, Vol. 4, pp. 535-554.
Jorion, P., 1995, “Prediction Volatility in the Foreign Exchange Market,” Journal of Finance, Vol. 50, No. 5, pp. 507-528.
Jorion, P., 1988, “On Jump Processes in the Foreign Exchange and Stock Markets,” Review of Financial Studies, Vol. 1, No. 4, pp. 427-445.
Kao, E. P. C., 1997, An Introduction to Stochastic Processes, International Thomson Publishing, C.A.
Kim, M. J., Oh, Y. H., and Brooks, R., 1994, “Are Jumps in Stock Returns Diversifiable? Evidence and Implications for Option Pricing,” Journal of Financial and Quantitative Analysis, Vol. 29, No. 4, pp. 609-631.
Klebaner, F. C., 1998, Introduction to Stochastic Calculus with Application, Imperial College Press, N.J.
Kremer, J. W., and Roenfeldt, R. L., 1992, “Warrant Pricing: Jump-Diffusion vs. Black-Scholes,” Journal of Financial and Quantitative Analysis, Vol. 28, No. 3, pp. 255-271.
Lamoureux, C. G., and Lastrapes, W. D., 1993, “Forecasting Stock Return Variance: Toward an Understanding of Stochastic Implied Volatilities,” Review of Financial Studies, Vol. 6, pp. 293-326.
Lauterbach, B., and Schultz, P., 1990, “Warrants: An Empirical Study of the Black-Scholes Model and Its Alternatives,” Journal of Finance, Vol. 45, No. 4, pp. 1181-1209.
MacBeth, J. D., and Merville, L. J., 1979, “An Empirical Examination of the Black-Scholes Call Option Pricing Model,” Journal of Finance, Vol. 34, No. 5, pp. 1173-1186.
Merton, R. C., 1976, “The Impact on Option Pricing of Specification Error in the Underlying Stock Price Returns,” Journal of Finance, Vol. 32, No. 2, pp. 333-351.
Merton, R. C., 1976, “Option Pricing When Underlying Stock Returns Are Discontinuous,” Journal of Financial Economics, Vol. 3, pp. 125-144.
Neftci, S. A., 2000, An Introduction to the Mathematics of Financial Derivatives, Second Edition, Academic Press, N.Y.
Nelson, D. B., 1991, “Conditional Heteroskedasticity in Asset Returns: A New Approach,” Econometrica, Vol. 59, pp. 347-370.
Nelson, D. B., 1990, “ARCH Models as Diffusion Approximations,” Journal of Econometrics, Vol. 45, pp. 7-38.
Omberg, E., 1988, “Efficient Discrete Time Jump Process Models in Option Pricing,” Journal of Financial and Quantitative Analysis, Vol. 23, No. 2, pp. 161-175.
Pliska, S. R., 1997, Introduction to Mathematical Finance: Discrete Time Models, Blackwell Publishers, U.S.A.
Ritchken, P., and Trevor, R., 1999, “Pricing Options under Generalized GARCH and Stochastic Volatility Processes,” Journal of Finance, Vol. 54, No. 1, pp. 377-402.
Romano, M., and Touzi, N., 1997, “Contingent Claims and Market Completeness in a Stochastic Volatility Model,” Mathematical Finance, Vol. 7, No. 4, pp. 399-412.
Rubinstein, M., 1985, “Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978,” Journal of Finance, Vol. 40, No. 2, pp. 455-480.
Rubinstein, M., 1983, “Displaced Diffusion Option Pricing,” Journal of Finance, Vol. 38, No. 1, pp. 213-217.
Rubinstein, M., 1976, “The Valuation of Uncertain Income Streams and the Pricing of Options,” Bell Journal of Economic Management Science, Vol. 7, pp. 407-425.
Sabbatini, M., and Linton, O., 1998, “A GARCH Model of the Implied Volatility of the Swiss Market Index from Option Prices,” International Journal of Forecasting, Vol. 14, pp. 199-213.
Scott, L. O., 1997, “Pricing Stock Options in a Jump-Diffusion Model with Stochastic Volatility and Interest Rates: Applications of Fourier Inversion Methods,” Mathematical Finance, Vol. 7, No. 4, pp. 413-426.
Scott, L., 1987, “Option Pricing When the Variance Changes Randomly: Theory, Estimation, and an Application,” Journal of Financial and Quantitative Analysis, Vol. 22, No. 2, pp. 419-438.
Shastri, K., and Tandon K., 1986, “Valuation of Foreign Currency Options: Some Empirical Tests,” Journal of Financial and Quantitative Analysis, Vol. 21, No. 2, pp. 145-160.
Stein, E. M., and Stein, J. C., 1991, “Stock Price Distributions with Stochastic Volatility: An Analytic Approach,” Review of Financial Studies, Vol. 4, No. 4, pp. 727-752.
Tsay, R. S., 2002, Analysis of Financial Time Series: Financial Econometrics, John Wiley and Sons, U.S.A.
Tucker, A. L., and Pond, I., 1988 “The Probability Distribution of Foreign Exchange Price Change: Tests of Candidate Processes,” Review of Economics and Statistics, Vol. 70, pp. 638-647.
Whaley, R. E., 1982, “Valution of American Call Options on Dividend Paying Stocks : Empirical Tests,” Journal of Financial Economics, Vol. 10, pp. 29-58.
Wiggins, J. B., 1987, “Option Values under Stochastic Volatility: Theory and Empirical Estimates,” Journal of Financial Economics, Vol. 19, pp. 351-372.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top