[1]王皓正,「時間序列資料之查詢與資料發掘--以台灣股市為例」,碩士論文,國立台灣大學資訊管理研究所,台北(2000)[2]李金鳳,「資料探勘面面觀」,資訊與教育雜誌,台北(2001)[3]張簡尚偉、張衡閣,「利用常見型樣相鄰矩陣來探勘資料庫序列型樣」, 第十三屆國際資訊管理學術研討會,台北,第729-736頁(2001)
[4]陳完禧、蔡佩瑾、周恩聖,”網際網路網頁存取樣式資料探勘之研究”, 第七屆資訊管理研究暨實務研討會,民國91年
[5]R. Agrawal, T. Imielinski, & A. Swami, “Mining Association Rules between Sets of Items in Large Database,” Proceedings of SIGMOD, Washington, USA, pp. 207-216 (1993).
[6]R. Agrawal, T. Imielinski and A. Swami, “Database Mining: A Performance Perspective,” IEEE Transactions on Knowledge and Data Engineering, pp. 914-925 (1993).
[7]R. Agrawal, C. Faloutsos and A. Swami, “Efficient Similarity Search in Sequence Databases,” Lecture Notes in Computer Science 730, Springer Verlag, pp. 69-84 (1993).
[8]R. Agrawal and R.Srikant, “Fast Algorithm for Mining Association Rules in Large Databases,” Proceedings of The 20th International Conference on Very Large DataBases, Santiago, Chile, pp. 487-499 (1994).
[9]R. Agrawal and R.Srikant, “Mining sequential patterns,” Proceedings of The International Conference on Data Engineering, Taipei, Taiwan, pp. 3-14 (1995).
[10]K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. Proceedings of ACM-SIGMOD International Conference on Management of Data, Philadelphia, USA, pp. 359-370 (1999).
[11]M.S. Chen, J. Han, and P.S. Yu, “Data Mining: An Overview from a Database Perspective”, IEEE Transactions on Knowledge and Data Engineering, Vol 8, pp.866-883 (1996).
[12]M. S. Chen, J. Han and P. S. Yu, “Efficient Data Mining for Path Traversal Patterns,” IEEE Transactions on Knowledge and Data Engineering, Vol.10, No. 2, pp. 209-221 (1998).
[13]A. Chen, L. Liu, N. Chen and G. Xia, “Application of Data Mining in Supply Chain Management,” Proceedings of the 3rd World Congress on Intelligent Control and Automation, Hefei, China, pp.1943-1947 (2000).
[14]S.W. Changchien and T. C. Lu (2001), “A new efficient association rules mining method using class inheritance tree,” Proceedings of the 12th International Conference of Information Management, Taipei, Taiwan, (2001).
[15]R. Cooley, B. Mobasher and J. Srivastava, “Web Mining: Information and Pattern Discovery on the World Wide Web,” Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’97), Newport Beach, USA, pp. 558-576 (1997).
[16]P. F. Drucker, Post-Capitalist Society, HarperCollins Publishers (1993). 【P. F. Drucker, 傅振焜譯,後資本主義社會,時報文化,1993】
[17]C. Faloutsos, M. Ranganathan and Y. Manolopoulos, “Fast Subsequence Matching in Time-Series Databases,” Proceedings of ACM SIGMOD International Conference on Management of Data, Minneapolis, USA, pp. 419-429 (1994).
[18]U.M. Fayyad, G. Piatesky-Shapiro, P. Smith, and R. Uthurusany, “Advances in Knowledge Discovery and Data Mining,” Cambridge, MA(The AAAI Press/The MIT Press), (1996).
[19]W. J. Frawley, G. Paitetsky-Shapiro, and C. J. Matheus, “Knowledge Discovery in Databases: An Overview. Knowledge Discovery in Databases, ” edited by G. Piatetsky-Shapiro and W. J. Frawley, AAAI/MIT Press, California, USA, pp.1-30 (1991).
[20]A. W. Fu, M. H. Wong, S. C. Sze, W. C. Wong, W. L. Wong, and W. K. Yu, “Finding fuzzy sets for the mining of fuzzy association rules for numerical attributes,” Proceedings of 1st International Symposium on Intelligent Data Engineering and Learning (IDEAL'98), pp. 263-268 (1998).
[21]J. Han, L. V. S. Lakshmanan and R. T. Ng, “Constraint-Based, Multidimensional Data Mining,” IEEE Computer, Vol. 32, pp. 46-50 (1999).
[22]J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M-C. Hsu, “Freespan: Frequent pattern-projected sequential pattern mining,” Proceedings of the International Conference of Knowledge Discovery and Data mining, pp. 355-359 (2000).
[23]J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann,San Francisco, (2001).
[24]J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate Generation,“ Proceedings of the ACM SIGMOD International Conference on Management of Data, Dallas, USA, pp. 241-250 (2000).
[25]T. P. Hong, C. S. Kuo, S. C. Chi, “Mining Association Rules From Quantitative data,” Intelligent Data Analysis, Vol. 3, pp. 363-376, (1999)
[26]M. Kamber, J. Han, and J. Y. Chiang, “Metarule-guided mining of multi-dimensional association rules using data cubes,” Proceedings of the International Conference of Knowledge Discovery and Data Mining(KDD’97), Newport Beach, USA, pp. 207-210 (1997).
[27]M. Klemettinen, H. Mannila and H. Toivonen, “Interactive Exploration Of Interesting Findings In The Telecommunication Network Alarm Sequence Analyzer(TASA),” Information and Software Technology, Vol. 41, No. 9, pp. 557-567 (1999).
[28]H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery Of Frequent Episodes In Event Sequences,” Data Mining and Knowledge Discovery, No.1, pp.259-289 (1997).
[29]F. Masseglia, F. Cathala and P. Poncelet, “The PSP Approach for Mining Sequential Patterns.” Proceedings of the 2nd European Symposium on Principles of Data Mining and Knowledge Discovery, Nantes, France, Vol 1510, pp. 176-184 (1998).
[30]J. S. Park, M. S. Chen, and P. S. Yu, “An effective hash based algorithm for mining association rules,” Proceedings of the ACM SIGMOD International Conference on Management of Data, San Jose, USA, pp. 175-186 (1995).
[31]Z. Pawlak, “Rough Set,” International Journal of Information and Computer Sciences, Vol.11, No.1, pp. 341-356 (1982).
[32]J. Pei, J.Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U.Dayal and M-C. Hsu, “PrefixSpan: Mining Sequential Patterns Efficiently by Prefix Prejected Pattern Growth,” Proceeding of the International Conference of Data Engineering, H eidelberg, Germany, pp. 215-224 (2001).
[33]G. Piatetsky-Shapiro, “Discovery, Analysis, and Presentation of Strong Rules,” Knowledge Doscovery in Databases, AAAI/MIT Press (1991).
[34]H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal. "Multi-Dimensional Sequential Pattern Mining", Proceedings of the 10th ACM International Conference on Information and Knowledge Management (CIKM'01), Atlanta, USA, pp. 81-88 , (2001).
[35]A. Ragel, B. Cremilleux, “MVC—a preprocessing method to deal with missing values,” Data & Knowledge Engineering Volume: 18, Issue: 3, pp. 189-223 (1996).
[36]A. Savasere, E. Omiecinski, and S. Navathe, “An Efficient Algorithm for Mining Association Rules,” Proceedings of the 21st Conference of Very Large Databases(VLDB), pp. 432-444 (1995).
[37]A. Siberschatz and A. Tuzhilin, “On subjective Measures of Interestingness in Knowledge Discovery,” Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining, Menlo Park, USA, pp. 275-281 (1995).
[38]A. Siberschatz and A. Tuzhilin, “What Makes Patterns Interesting in Knowledge Discovery Systems,” IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No.6, pp. 970-974, (1996).
[39]R. Srikant and R. Agrawal, “Mining generalized association rules,” Proceedings of the 21st Conference of Very Large Databases(VLDB), Zurich, Switzerland, pp. 407-419 (1995).
[40]F. C. Tseng and C. C. Hsu, “Generating frequent patterns with the frequent pattern list,” Proceedings of the Asia Pacific Conference of Data Mining and Knowledge Discovery, Hong Kong, China, pp. 376-386 (2001).
[41]C. Westphal and T. Blaxton, Data Mining Solutions-Methods and Tools for Solving Real-World Problems, John Wiley & Sons (1998).
[42]M. J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent Sequences,” Proceeding of Machine Learning Journal, special issue on Unsupervised Learning, Vol. 42 Nos. 1/2, pp. 31-60 (2001).