(3.239.33.139) 您好!臺灣時間:2021/03/07 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪英州
研究生(外文):(Yin-Chou Hung)
論文名稱:地下室開挖形狀對震波散射問題之數值研究
論文名稱(外文):Numerical Analysis of Wave Scattering ffect Due to Shape of Basement Excavations
指導教授:蔡佩勳蔡佩勳引用關係
指導教授(外文):Pei-Hsun Tsai
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:營建工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:177
中文關鍵詞:邊界元素法震波散射
外文關鍵詞:boundary element methodseismic wavesscattering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:2
在921地震後,經觀察發現,半開挖式地下室結構損毀情形大部分比全開挖式結構嚴重。在影響因素中,學者普遍認為導致此種現象之主要因素為震波入射於不規則地形產生散射及繞射現象引起地表位移放大效應。因此,探討如何降低震波入射於不規則地形之地表位移已成為重要的課題。
本文利用二維頻率域邊界元素法解析六種開挖形式及地下室嵌於無限半平面表面在受P,SV波或Rayleigh波入射後對開挖形式或地下室表面位移變化情形並加以評估,討論及分析,以作為日後施工時之參考。在分析比較不同開挖形式及地下室位移變化中,除在高頻時,左半開挖形式造成的水平及垂直位移比全開挖形式及右半開挖形式還大。所以可推估地震來時半開挖形式中,若半開挖側與入射方向同側時會發生較大的位移反應。而三種開挖形式在頻率較低時,因散射及繞射效應較不明顯,所以在水平位移平均比及垂直位移平均比差距都較小。而高頻時則依照各種入射波及入射角而有不同散射及繞射效應,所以水平位移平均比及垂直位移平均比差距較大。
Field observations after 921 earthquake show that the irregular basement has serious damage because of amplification of ground motion. Profession think that one of the principal causes for the damage may be attributed to the amplification of incident waves by local irregular topography.
This paper is to study the wave scattering of P, SV and Rayleigh waves in the excavation or the basement embedded in homogeneous, elastic and isotropic half plane by using the 2-D frequency domain boundary element method. The influence of key parameters, such as the shape of excavation or basement, frequency, and angle of incidence on surface ground motion are studied in detail.
In the higher frequency, the displacement amplitude ratio of left-half excavation is larger than that of right-half excavation and open excavation. In lower frequency, the difference of the displacement amplitude ratio between three excavation types may be ignored, for the reason of less scattering or diffraction of waves. However, the effects of the scattering and diffraction of waves, the displacement amplitude ratio are more influenced in the higher frequency.
第一章緒論
第二章文獻回顧
第三章邊界元素法建立數學模式
第四章參數研究與分析
第五章分析結果與討論
第六章結論與建議
參考文獻
附錄(A) 自由場質點位移
附錄(B) 程式流程圖及副程式目的
附錄(C) 考慮P波,SV及Rayleigh波在各入射角度下擾動不同開挖形式之水平及垂直位移比影響圖
附錄(D) 考慮P波,SV及Rayleigh波在各入射角度下擾動不同地下室形式之水平及垂直位移比影響圖
參考文獻
1.Mossessian T. K. and Dravinski M., “Application of a Hybrid Method for Scattering of P, SV, and Rayleigh Waves by Near-Surface Irregularities,” Bulletin of Seimological Society of America., Vol. 77, No.5, pp. 1784-1803 (1987).
2.Wong H. L. and Trifunac M. D., “Scattering of Plane SH Waves by Semi Elliptical Canyon,” Earthquake Engineering and Structural Dynamics, Vol. 3, pp. 157 (1974).
3.Francisco J. Sanchez-Sesma and Emilio Rosenblueth, “Ground Motion at Canyons of Arbitrary Shape under Incident SH Wave,” Earthquake Engineering and Structral Dynamics, Vol. 7, pp. 441-450 (1979).
4.Cao H. and Lee V. W., “Scattering and Diffraction of Plane P Waves by Circular Cylindrical Canyons with Variable Depth-to-Width Ratio,” Soil Dynamics and Earhquake Engineering, Vol. 9, No.3, pp.141-150 (1990).
5.Bravo, M. A. and Sanchez-Sesma, “Seismic Response of Alluvial Valleys for Incident P, SV and Rayleigh Waves,” Soil Dynamics and Earthquake Engineering, Vol. 9, pp. 16-19 (1990).
6.Abdul Hayar, M. I. Todorovska, and Mihailo D., “Trifunac Antiplane Response of a Dike on Flexible Embedded Foundation to Incident SH-waves,” Soil Dynamics and Earhquake Engineering, pp. 593-601 (2001).
7.Abdul Hayar , Todorovska M. I., Mihailo D., “Trifunac Antiplane Response of a Dike on Flexible Soil-Stucture Interface to Incident SH Waves,” Soil Dynamics and Earhquake Engineering, pp. 603-613 (2001).
8.洪昌祺,「矩形槽溝對沉埋基礎震動阻隔效應之分析」,碩士論文,國立成奶j學土木工程研究所,臺南(1992)。
9.Jose Dominguez and Ramon Abasl, Advanced Boundary Element Methods, pp. 125-133 (1987).
10.鄭吉宏,「含孔半平面動彈性問題之邊界元素法解析」,碩士論文,國立成奶j學土木工程研究所,臺南(1990)。
11.Fishman K. L. and Alimad S., “Seismic Response for Alluvial Valleys Subjected to SH, P and SV Waves,” Soil Dynamics and Earhquake Engineering, Vol. 14, pp. 249-258 (1995).
12.Dineva P. S. and Manolis G. D., “Scattering of Seismic Waves by Cracks in Multi-Layered Geological Regions Ι Mechanical Model,” Soil Dynamics and Earhquake Engineering, Vol. 21, pp. 615-625 (2001).
13.Dineva P. S. and Manolis G. D., “Scattering of Seismic Waves by Cracks in Multi-Layered Geological Regions Π Numerical Results,” Soil Dynamics and Earhquake Engineering, Vol. 21, pp. 627-641 (2001).
14.Chaojin Xu , C. C. Spyrakos, “Seismic Analysis of Lock-Soil-Fluid Systems by Hybrid BEM-FEM,” Soil Dynamics and Earhquake Engineering, Vol. 21, pp. 259-271, (2001).
15.Naimi M., Sarma S. K., and Seridi A., “New Inclined Conditions in Seismic Soil-Structure Interaction Problems,” Engineering Structures, Vol. 23, pp. 966-978 (2001).
16.Achenbach, J. D., “Wave Propagation in Elastic Soilds,” North-Holland Amsterdam, pp.46-78, pp. 165-194 (1973).
17.Pao, Y. H. and Mow, C. C., “Diffraction of Elastic Waves and Dynamic Stress Concentrations,” Crane, Russad and Company Inc., pp. 208-396 (1972).
18.Kitahara, M., Boundany Integral Equation Method in Eigenvalue Problem of Elastodynamics and Thin Plates, Elsevuer Sciene Publishers B.V., (1985).
19.熊雲嵋,蔡熙昀,張秋旺,「土壤剪應力-位移曲線與基樁t-z曲線」,中國土木水利工程學刊,第二十二卷,第三期,第3-15頁(1995)。
20.黃兆龍,簡編混凝土性質與行為,詹氏書局,第424-425頁(1996)。
21.Gazetas, G. and Yegin K., “Shear and Rayleigh Wave in Soil Dynamics,” Journal of the Geotechnical Engineering Division, pp. 1455-1469 (1979).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔