(3.232.129.123) 您好!臺灣時間:2021/03/04 17:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇富誠
研究生(外文):Fu-Cheng Su
論文名稱:多通道之主動式引擎隔振控制系統
論文名稱(外文):Multi-Channel Active Vibration Control in Engine Mount Isolation System
指導教授:吳建達
指導教授(外文):Jian-Da Wu
學位類別:碩士
校院名稱:大葉大學
系所名稱:車輛工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:71
中文關鍵詞:引擎懸吊平台系統主動式振動控制數位信號處理
外文關鍵詞:active vibration controlengine mount systemdigital signal processorfinite-impulse-response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要是描述利用數位信號處理器來實現汽車引擎多點懸吊系統之主動式振動控制器,期能消除汽車引擎系統所產生之週期與非週期性振動。而本研究中是以單自由度及多自由度懸吊振動平台藉以模擬引擎懸吊隔振控制系統之架構。因近年來汽車乘坐舒適性愈來愈受到重視,而傳統被動式隔振系統,雖然設計簡單,安裝容易且系統較穩定,但被動式控制的設計參數經常是固定的,並不能隨引擎操作環境不同而改變;同時被動式隔振系統,對於高頻域控制效果較佳,相對地在低頻域控制效果較差。所以在本研究將發展針對窄頻或週期性等較穩定振動源之控制系統,利用前饋、回饋及由前饋與回饋所衍生的複合型等三種控制基本架構並利用有限脈衝響應濾波器來實現控制器。
在前饋控制中應用適應性濾波器及最小均方根誤差理論,回饋控制採用的是線性二次型高斯的現代控制理論及後現代控制論所發展的強健控制 理論。在複合型的控制架構中是結合前饋式性能佳的優點及回饋式的收斂快速及強健功能,而達到性能及穩定強健性較佳之優點。在實際引擎懸吊系統上,外在條件的的影響因素相當多,如引擎轉速變化及汽車底盤振動傳遞等,這些因素勢必需納入控制器設計時參考之要素。一般傳統控制理論是以單輸入單輸出系統控制的效果較佳;但以引擎多點懸吊系統的觀點而言,則是一典型的多輸入多輸出系統,因此要以現代控制理論的架構為基礎,才能符合系統複雜度的需求。
本論文將評估其三種控制器及三種控制架構實現於兩個模擬引擎懸吊隔振平台之實驗結果。前饋之控制性能佳,但缺乏強健性,而回饋控制結果顯示恰與前饋相反;因此,在本論文之後半部衍生出複合式控制,其控制效果顯示性能及強健性都比前饋及回饋來得佳,兩個模擬引擎懸吊平台之控制器實現及差異將在本論文裡予以探討。

This thesis describes an active vibration control (AVC) system for single-degree-of-freedom (SDOF) and multiple-degrees-of-freedom (MDOF) isolation platforms. Three various active vibration control techniques are compared and implemented in terms of control structures and control algorithms by using a finite-impulse-response (FIR) in experimental works. The adaptive feedforward and feedback control structure using filtered-x least-mean-square (FXLMS) with synthetic reference is employed, the linear quadratic Gaussian (LQG) algorithm with compensator and the H-infinity (H∞ ) of robust theory are applied in feedback control system. A hybrid controller combines the adaptive feedforward with feedback algorithms of LQG and to obtain the desired robust performance and fast convergence is proposed. Two control plant configurations are identified by a frequency-domain technique and implemented by using a TMS320C32 digital signal processor (DSP). Experiments are carried out to evaluate the proposed system for reducing the vibration of isolation platform at various control conditions. The comparison of three control structures and three algorithms for two isolation platforms is also described in this thesis.

COVER
CREDENTIAL
AUTHORIZATION LETTERS………………………………………iii
ABSTRACT (CHINESE)……………………………………………v
ABSTRACT (ENGLISH)……………………………………………vii
ACKNOWLEDGMENT…………………………………………………viii
TABLE OF CONTENTS………………………………………………ix
LIST OF FIGURES…………………………………………………xi
LIST OF TABLES…………………………………………………xiv
LIST OF SYMBOLS…………………………………………………xv
CHAPTER 1
INTRODUCTION
1.1 Introduction of this Study…………………………………1
1.2 Literature Review………………………………………………2
1.3 Overview of this Thesis………………………………………6
CHAPTER 2
THEORIES AND STRUCTURES OF ACTIVE VIBRATION CONTROL SYSTEM
2.1 Adaptive Feedforward and Feedback Control System………8
2.1.1 The SDOF feedforward system………………………………8
2.1.2 The SDOF feedback system…………………………………10
2.1.3 The MDOF feedforward system………………………………12
2.1.4 The MDOF feedback system…………………………………15
2.2 LQG Synthesis with Compensator………………………………17
2.3 H∞Robust Control Theory………………………………………21
2.4 Hybrid Control System…………………………………………25
CHAPTER 3
IMPLENENTATION OF CONTROLLERS AND EXPERIMENTAL VERIFICATION
3.1 Experimental Verification of SDOF System…………………29
3.1.1 FXLMS algorithm with synthetic reference……………32
3.1.2 LQG synthesis with compensator…………………………35
3.1.3 H∞control algorithm………………………………………38
3.1.4 Hybrid control………………………………………………41
3.2 Experimental Verification of MDOF System…………………44
3.2.1 FXLMS algorithm with synthetic reference……………47
3.2.2 LQG synthesis with compensator…………………………53
3.2.3 H∞control algorithm………………………………………57
3.2.4 Hybrid control………………………………………………61
CHAPTER 4
CONCLUSIONS……………………………………………………………66
REFERENCES………………………………………………………………69

1. R. L. Clark and D. S. Bernstein, 1998, “Hybrid control: separation in design,” Journal of Sound and Vibration, Vol. 214, pp. 784-791.
2. A. M. Beard, D. W. Schubert and A. H. Flotow, 1994, “A practical product implementation of an active/ passive vibration isolation system,” ASME Journal of Vibration and Acoustics, Vol. 75, pp. 485-492.
3. L. R. Miller, M. Ahmadian, C. M. Nobles and D. A. Swanson 1995, “Modeling and performance of an experimental active vibration isolator,” ASME Journal of Vibration and Acoustics, Vol. 117, pp. 272-278.
4. C. R. Fuller, S. J. Elliott and P. A. Nelson, 1997, Active Control of Vibration, San Diego: Harcourt-Brace.
5. S. M. Kuo and D. R. Morgan, 1996, Active Noise Control Systems: Algorithms and DSP Implementations, New York: John Wiley and Sons.
6. J. S. Vipperman, R. A. Burdisso and C. R. Fuller, 1993, “Active control of broadband structural vibration using the LMS adaptive algorithm,” Journal of Sound and Vibration, Vol. 166, pp. 283-299.
7. Y. Okada, H. Harada and K. Suzuki, 1997, “Active and regenerative control of an electrodynamic-type suspension,” JSME Journal Series C., Vol. 40, pp. 272-278.
8. D. Karnopp, 1995, “Active and semi-active vibration isolation,” ASME Special issue, Vol. 117, pp. 177-185.
9. Z. Nakajima and A. Ichikawa, 1995, “Active engine mount for large amplitude of idling vibration,” SAE paper NO.951298.
10. M. R. Jolly and D. L. Margolis, 1997, “Regenerative systems for vibration control,” ASME Journal of Vibration and Acoustics, Vol. 119, pp. 208-215.
11. J. D. Wu and M. R. Bai, 2001, “Application of feedforward adaptive active noise control for reducing blade passing noise in centrifugal fans,” Journal of Sound and Vibration, Vol. 239, pp. 1051-1062.
12. R. H. Cabell and C. R. Fuller, 1999, “A principal component algorithm for feedforward active noise and vibration control,” Journal of Sound and Vibration, Vol. 227, pp. 159-181.
13. A. Krishnan and M. Das, 2000, “Minimum variance & LQG control for active noise canceling-a comparison,” Proc. 43rd IEEE Conf. Midwest Symp. on Circuits and System pp. 1358-1361.
14. M. Bai and H. Chen, 1996, “A modified H2 feedforward active control system for suppressing broadband and transient noises,” Journal of Sound and Vibration, Vol. 198, pp. 81-94.
15. C. E. Lin and Y. R. Sheu, 1992, “A hybrid-control approach for pendulum-car control,” IEEE Transactions on Control System Industrial Electronics Vol. 39, pp. 208-214.
16. Y. H. Liu, K. Kitagaki, T. Ogasawara and S. Arimoto, 1999, “Model-based adaptive hybrid control for manipulators under multiple geometric constraints,” IEEE Transactions on Control Systems Technology, Vol. 7, pp. 97-109.
17. W. Yu, T. Chai and Y. Yuan, 1996, “Decreased vibration control for centrifuges: a new adaptive hybrid control technique,” Control Engineering Practice, Vol. 4, pp. 1693-1700.
18. J. Yang, Y. Suematsu and Z. Kang, 2001, “Two-degree-of-freedom controller to reduce the vibration of vehicle engine-body system,” IEEE Transactions on Control System Technology, Vol. 9, pp. 295-304.
19. J. M. Maciejowski, 1990, Multivariable Feedback Design, New York: Addison-Wesley.
20. S. Skogestad and I. Postlethwaite, 1996, Multivariable Feedback Control, New York: John Wiley and Sons.
21. R. H. Middleton and G. C. Goodwin, 1990, Digital Control and Estimation, New Jersey: Prentice-Hall.
22. M. R. Bai and W. Luo, 2000, “DSP implementation of an active bearing mount for rotors using hybrid control,” ASME Journal of Vibration and Acoustics, Vol. 122, pp. 420-428.
23. W. K. Tseng, B. Rafaely and S. J. Elliott, 1998, “Combined feedback-feedforward active control of sound in a room,” Journal of Acoustical Society of America, Vol. 104, pp. 3417-3425.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔