(44.192.112.123) 您好!臺灣時間:2021/03/08 15:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李思樺
研究生(外文):Shih-Hua Lee
論文名稱:松杉靈芝β-葡聚醣酶純化及定性之研究
論文名稱(外文):Purification and Characterization of β-glucanase from Ganoderma tsugae
指導教授:陳鴻章陳鴻章引用關係
指導教授(外文):Hung-Chang Chen
學位類別:碩士
校院名稱:大葉大學
系所名稱:食品工程研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:98
中文關鍵詞:靈芝生理活性多醣體β-葡聚醣酶酵素分析
外文關鍵詞:Ganoderma tsugaebioactivepolysaccharideβ-glucanaseenzymatic assay
相關次數:
  • 被引用被引用:5
  • 點閱點閱:449
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
靈芝之主要生理活性成份是一群具有β-1,3鍵結之聚葡萄糖主鏈之高分子多醣體。本研究主要是以靈芝屬中之松杉靈芝Ganoderma tsugae建立起β-葡聚醣酶之分離、純化方法並探討其物化特性。
松杉靈芝中之β-1,3葡聚醣酶利用硫酸銨分劃、Sephadex G-50及DEAE Spharose CL-6B管柱層析等步驟純化後,其回收率為4.2%,β-1,3葡聚醣酶分別被純化15.1倍。其最適作用pH值為5.0,此酵素在pH值6.0時最為穩定。β-1,3葡聚醣酶之最適作用溫度為50℃,而當溫度在60℃或60℃以上時,此酵素會因變性而失去活性。在受質特異性方面,當以laminarin作為受質時,可得到最大之酵素活性,而以curdlan、lichenan及zymosan為受質時,其相對水解活性分別為16.1、43.7及26.3%。在金屬離子方面,10 mM Cu+2與酵素作用之後,其活性完全受到抑制,而當以Fe+2, Zn+2, Mn+2, Mg+2, Na+2及Ca+2與酵素作用之後,其抑制率介於30.0-85.2%,而Co+2對β-1,3葡聚醣酶之活性影響最小。在抑制劑方面,常見之抑制劑皆能對β-1,3葡聚醣酶活性加以抑制,當L-抗壞血酸濃度達10 mM時,幾乎能完全的抑制β-1,3葡聚醣酶活性。在酵素動力學方面,當以laminarin最為受質時所求得之Km值為5.99 mg/ml,而Vmax則為129.87 OD/min.ml。
β-1,6葡聚醣酶利用硫酸銨分劃、Sephadex G-50及DEAE Spharose CL-6B管柱層析等步驟純化後,其回收率為3.2%,β-1,3葡聚醣酶分別被純化15.6倍。β-1,6葡聚醣酶顯示其具有較廣範圍之最適作用pH值;在pH 5.0時其活性最大,而此酵素在pH 6.0時最為穩定。其最適作用溫度為60℃,但當此酵素在50或50℃以上的溫度下時則很容易快速變性失活。在受質特異性方面,當以pustulan作為受質時,其具有最大之酵素活性,而zymosan也有48.3%的相對活性。在金屬離子方面,當以10 mM Ca+2與酵素作用之後,其活性完全受到抑制,而當以Fe+2, Zn+2, Mn+2, Mg+2, Na+2及Cu+2與酵素作用之後,其抑制率介於41.0- 84.6%。而Co+2對β-1,6葡聚醣酶之活性影響不大。在抑制劑方面,常見之抑制劑皆能對β-1,3葡聚醣酶活性加以抑制,當sodium metabisulfite濃度達10 mM時幾乎能完全的抑制β-1,6葡聚醣酶活性。在酵素動力學方面,當以pustulan最為受質時所求得之Km值為1.88 mg/ml,而Vmax則為75.19 OD/min.ml。
綜合以上結果可知,β-1,3葡聚醣酶及β-1,6葡聚醣酶在受質特異性方面,僅對β-1,3及β-1,6鍵結之多醣體具有活性,對其他方式鍵結之多醣體沒有任何活性存在。因此,利用酵素分析方法來測定市售靈芝產品中之多醣體,應具有其之可行性。
The bioactive carcinostatic substance in Lingzhi is high molecular weight polysaccharides linked byβ-(1,3)-D-glucosidic bond. In this project, the β-glucanases from Ganoderma tsugae were isolated, purified and characterized.
Purification of the β-1,3 glucanase from Ganoderma tsugae with a recovery of 4.2% and purity increase of 15.1 fold was achieved by ammonium sulfate fractionation, Sephadex G-50 and DEAE Sepharose CL-6B chromatography. The optimum pH forβ-1,3 glucanase was 5.0. The enzyme was stable at pH 6.0. The optimum temperature for β-1,3 glucanase was 50℃. The enzyme was rapidly denatured at temperature of 60℃ and above. Substrate specificity studies indicated this enzyme has maximum activity toward laminarin. The relative rate of hydrolysis of curdlan, lichenan and zymosan to that of laminarin was 16.1, 43.7 and 26.3%, respectively. Almost complete inhibition was observed with 10 mM Cu+2, while moderate inhibition was seen with Fe+2, Zn+2, Mn+2, Mg+2, Na+2及Ca+2. Activity was unaffected by 10 mM Co+2. All the common inhibitors tested inhibitedβ-1,3 glucanase activity to various extents. The enzyme was completely inhibited by 10 mM L-asccorbic acid. The Km value of β-1,3 glucanase toward laminarin was 5.99 mg/ml, while Vmax was 129.87 OD/min. ml.
Purification of the β-1,6 glucanase from Ganoderma tsugae with a recovery of 3.2% and purity increase of 15.6 fold was achieved by ammonium sulfate fractionation, Sephadex G-50 and DEAE Sepharose CL-6B chromatography. β-1,6 glucanase displayed relatively broad pH optimum. The enzyme was stable at pH 6.0. The optimum temperature for β-1,6 glucanase was 60℃. The enzyme was rapidly denatured at temperature of 50℃ and above. Substrate specificity studies indicated this enzyme has maximum activity toward pustulan. The relative rate of hydrolysis of zymosan to that of pustulan was 48.3%. Almost complete inhibition was observed with 10 mM Ca+2, while moderate inhibition was seen with Fe+2, Zn+2, Mn+2, Mg+2, Na+2及Cu+2. Activity was unaffected by 10 mM Co+2. All the common inhibitors tested inhibitedβ-1,6 glucanase activity to various extents. The enzyme was completely inhibited by 10 mM Sodium metabisulfite. The Km value ofβ-1,6 glucanase of toward pustulan was 1.88 mg/ml, while Vmax was 75.19 OD/min. ml.
This study displayed thatβ-1,3 glucanase andβ-1,6 glucanase from Ganoderma tsugae only hydrolyze specific 1→3 and 1→6 linkage types of β-glucans, respectively. Therefore, substrate specific β-1,3 glucanase andβ-1,6 glucanase could be employed in the enzymatic assay to identify the authenticity of Lingzhi products on the market.
封面內頁
簽名頁
授權書 iii
中文摘要 iv
英文摘要 vi
誌謝 ix
目錄 x
圖目錄 xiv
表目錄 xvi
第一章 緒論 1
1.1研究背景 1
1.2研究動機 1
1.3研究大綱 2
1.4研究重要性 2
第二章 文獻回顧 4
2.1靈芝之簡介 4
2.1.1靈芝之分類 5
2.1.2靈芝之多醣體 6
2.1.3靈芝之保存方法 11
2.1.4多醣體之測定方法 12
2.2β-葡聚醣酶 14
2.2.1β-葡聚醣酶之存在 15
2.2.2β-葡聚醣酶之分類 16
(1)外切β-葡聚醣酶 18
(2)內切β-葡聚醣酶 18
(3)外切-內切β-葡聚醣酶 19
2.2.3β-葡聚醣酶之純化 20
2.2.4β-葡聚醣酶之物化特性 25
2.2.4.1分子量 25
2.2.4.2 pH值與等電點 29
2.2.4.3最適溫度 30
2.2.4.4專一性 30
2.2.5β-葡聚醣酶活性之測定 32
2.2.6β-葡聚醣酶之應用 33
第三章 材料與方法 37
3.1材料 37
3.1.1菌株 37
3.2化學藥品 37
3.3儀器與裝置 39
3.4實驗方法 41
一、靈芝之β-葡聚醣酶之萃取、分離及純化方法之建立
(1)純種菌種保存方法 41
(2)液態培養 41
(3)菌絲體乾重 42
(4)殘糖 42
(5)β-葡聚醣酶之純化 43
(6)酵素活性之測定 45
(7)蛋白質含量測定 46
二、靈芝中β-葡聚醣酶生化特性探討
(1)原態分子量 47
(2)受質專一性 47
(3)最適 pH 值 48
(4)pH 穩定性 48
(5)最適溫度 48
(6)熱穩定性 48
(7)各種可能之化學抑制劑及重金屬離子之影響 49
(8)酵素動力學測定 49
第四章 結果與討論 51
一、靈芝之β-葡聚醣酶之萃取、分離及純化方法之建立
(一)靈芝屬Ganoderma tsugae培養期間菌絲乾重、pH值及殘糖之變化 51
(二)硫酸銨飽和沈澱活性劃分 53
(三)Sephadex G-50管柱層析 56
(四)DEAE Sepharose CL-6B離子交換管柱層析 56
(五)純化總表 59
二、靈芝中β-葡聚醣酶生化特性探討
(一)原態分子量及次單元分子量 64
(二)最適pH及pH穩定性 67
(三)最適作用溫度及熱穩定性 70
(四)受質特異性 73
(五)金屬離子 76
(六)抑制劑 79
(七)酵素動力學 82
第五章 結論 87
參考文獻 90
圖目錄
圖一、具有抗腫瘤活性之多醣體結構 7
圖二、多醣體抗腫瘤之作用機制 9
圖三、酵素回收純化之流程 21
圖四、Ganoderma tsugae培養天數對菌絲乾重、pH值及殘糖之變化 52
圖五、靈芝屬β-1,3葡聚醣酶之硫酸銨飽和沉澱活性劃分 54
圖六、靈芝屬β-1,6葡聚醣酶之硫酸銨飽和沉澱活性劃分 55
圖七、β-1,3葡聚醣酶之Sephadex G-50管柱層析圖
57
圖八、β-1,6葡聚醣酶之Sephadex G-50管柱層析圖
58
圖九、β-1,3葡聚醣酶之DEAE Sepharose CL-6B管柱層析圖 60
圖十、β-1,6葡聚醣酶之DEAE Sepharose CL-6B管柱層析圖 61
圖十一、以膠體過濾層析測定β-1,3葡聚醣酶之原態分子量 65
圖十二、以膠體過濾層析測定β-1,6葡聚醣酶之原態分子量 66
圖十三、β-1,3葡聚醣酶之最適pH及pH穩定性 68
圖十四、β-1,6葡聚醣酶之最適pH及pH穩定性 69
圖十五、β-1,3葡聚醣酶之最適作用溫度及熱穩定性
71
圖十六、β-1,6葡聚醣酶之最適作用溫度及熱穩定性
72
圖十七、β-1,3葡聚醣酶作用於不同濃度受質之雙倒數圖 83
圖十八、β-1,6葡聚醣酶作用於不同濃度受質之雙倒數圖 84
表目錄
表一、β-glucan分解酵素之命名及作用機制 17
表二、各種鹽析及沉澱法之比較 22
表三、常用生物技術產物之液相層析分離技術 23
表四、真菌中β-葡聚醣酶之物化性質 26
表五、不同基質之鍵結形式 31
表六、胞外β-1,3葡聚醣酶之純化總表 62
表七、胞外β-1,6葡聚醣酶之純化總表 63
表八、純化後β-1,3葡聚醣酶對不同基質作用之相對活性 74
表九、純化後β-1,6葡聚醣酶對不同基質作用之相對活性 75
表十、金屬離子對β-1,3葡聚醣酶活性之影響 77
表十一、金屬離子對β-1,6葡聚醣酶活性之影響 78
表十二、抑制劑對β-1,3葡聚醣酶活性之影響 80
表十三、抑制劑對β-1,6葡聚醣酶活性之影響 81
表十四、β-葡聚醣酶與不同濃度受質之動力學參數 85
參考文獻
1. 丁懷謙(2000)。食藥用菇多醣體之免疫生理活性。食品工業32(5) 28-42。
2. 王伯徹、邱世浩、黃仁彰(1998)。食用菇保健食品特輯。食品工業30(5)1-36。
3. 王伯徹、林錦堂、華傑(1991)。靈芝菌種之長期保存。中國農業化學會誌28(1)86-93。
4. 水野 卓及川合正允(1992)。菇類的化學生化學。國立編譯館。台北。
5. 唐瑞菁、程梅萍(1992)。靈芝培養基的探討-酵母抽出物的取代。國立雲林技術學院學報4(1)145-156。
6. 陳國城(1999)。微生物酵素工程。P.33。
7. 梁志欽(1992)。松杉靈芝浸漬培養產生的1,3-beta-glucanase對菌體外多醣的影響。國立台灣大學農業化學研究所碩士論文。
8. 莊榮輝、蘇仲卿(1986)。蛋白質膠體電泳檢定法。P.69-85。
9. 許瑞祥(1990)。靈芝屬菌株鑑定系統之研究。國立台灣大學農業化學研究所博士論文。
10.許瑞祥(1995)。靈芝的研究現況與展望。生物產業 (Bioindustry),6(4),289-296。
11.曾浩洋 (1996)。飼料用酵素及乳酸菌之生化評估及相關乳酸菌之分子分類。行政院國科會 PB8211-2080。
12.傅偉光(1999)。靈芝中機能性成分分析方法之簡介。健康靈芝(冬季號),15-18。
13.趙東旭、楊新林、王幫武、朱鶴孫 (1999)靈芝研究的若干進展。食用菌學報6(3)59-64。
14.蘇遠志、黃世佑 (1994)。微生物化學工程。P.594。
15.Ainsworth, G. C., Sparrow, F. K., and Sussman, A. S. (1973). The Fungi. Vol. IVA. A Taxonomic Review with Key: Ascomycetes and Fungi Imperfecti. Academic Press, Inc. New York. 621pp.
16.Autio, K., Simoinen, T., Suortti, T., Salmenkallio, M. M., Lassila, K.and Wilhelmson, A. (2001). Structural and enzymic changes in germinated barley and rye. Journal-of-the-Institute-of-Brewing, 107 (1) 19-25, 32 ref.
17.Barras, D. R. (1972) A glucan endo-hydrolase from Schizosacchar- omyces pombe and its role in cell wall growth. Anton. Leeuwen, 38(1):65-80.
18.Bengtsson, S. (1992) Studies on structures and properties of soluble cell-wall polysaccharides in rye and barley. Dissertation-Abstracts
International, 53 (4) 649.
19.Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72:248-254.
20.Bodenmann, J., Heiniger, U. and Hohl, H. R. (1985) Extracellular enzyme of Phytophthora infestans:endo-cellulase, beta- glucosidases and 1,3-beta-glucanase. Can. J. Microbiol, 31(1)75-81.
21.Cai, Y. J., Buswell, J. A., and Chang, S. T. (1998). β-Glucanase components of the cellulolytic system of the edible straw mushroom, Volvariella volvacea. Enzyme and Microbial Technology, 22:122-129.
22.Carder, J. H. (1986) Detection and quantification of cellulase by congo red staining of substrates in a cup-plate diffusion assay. Anal. Biochem, 153:75-82.
23.Chang, R. (1994) Effective dose of Ganoderma in humans. In Proc. Contributed Symposium 59A,B. 5th Intl. Mycol. Congr., Buchanan PK, Hseu RS and Moncalvo JM(eds), Taipei, p.101-13.
24.Chang, R. (1996) The central importance of the 7-glucan receptor as the basis of immunologic bioactivity of Ganoderma polysaccharide. In Reishi, Mizuno T, Kim BK(eds), II Yang Press, Seoul, p.153-159.
25.Chasters, C. G. C., and Bull. A. T.(1963) The enzymic degradation of laminarin. 1. The distribution of laminarinase among microorganisms. Biochem. J, 86:28-31.
26.Chasters, C. G. C., and Bull. A. T.(1963) The enzymic degradation of laminarin.. 2.The multicomponent nature of fungal laminarinases. Biochem. J, 86:31-38.
27.Chasters, C. G. C., and Bull. A. T.(1963) The enzymic degradation of laminarin.3. Some effects of temperature, pH and various chemical reagents on fungal laminarinases. Biochem. J, 86:38-45.
28.Davis, B. J. (1964) Disc electrophoresis. Method and application to human serum protein. Ann. N. Y. Acad. Sci, 212(2):404-427.
29.Dill, I and G. Kraepelin. (1986) Model for extensive delignification of wood by Ganoderma applanatum. Applied-and-Environment- Microbiology, 52: 1305-1312.
30.Dingle, J., Reid, W. W. and Solomons, E. L. (1953) The enzymatic degradation of pectin and other polysaccharides. Application of the cup plate assay to the estimation of enzyme. J. Sci. Food. Agric, 4:149-154.
31.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem, 28:350-356.
32.Dobourdieu, D., Desplanques, C., Villettaz, J. and Ribereau-Gayon, P. (1985) Investigations of an industrial beta-D-glucanase from Trichoderma harzianum. Carbohydr. Res, 144(2): 277-287.
33.Elwinger, K. and Saterby, B. (1987) The use of beta-glucanase in practical broiler diets containing barly or oat. Swed. J. Agric. Res, 17:133-137.
34.Fleet, G. H. and Phaff, H. (1981) in Encyclopedia of Plant Physiology 13B (Tanner, W. and Loewous, F. A., eds) Springer-Verlag, Berlin, pp. 416-440.
35.Fleet, G. H. and Phaff, H. (1975) Glucanase in Schizosaccharomyces. Isolation and properties of an exo-beta-glucanase from the cell extract and culture fluid of Schizosaccharomyces japonicus var. versatilis. Biochem. Biophys. Acta, 410(2):318-332.
36.Fleet, G. H. and Phaff, H. (1974) Glucanase in Schizosaccharomyces. Isolation and properties of the cell wall-associated beta-1,3- glucanase. J. Biol. Chem, 249:1717-1728.
37.Fiske, M. J., Tobey-Fincher, K. L. and Fuchs, R. L. (1990) Cloning of two genes from Bacillus circulans WL-12 which encode 1,3-beta-glucanase activity. J. Gen. Microbiol, 136(12): 2377-2383.
38.Hien, N. H. and Fleet, G. H. (1983) Separation and charcterization of six β-(1→3)-glucanase from Saccharomyces cerevisiae. J. Bacterial, 156:1204-1213.
39.Karinen, P. and Lehtomaeki, I. (1990) Procedure for producing fine fibre, and fine fibre.PCT-International-Patent-Application; WO 90/10392 A1, FI 89-1110 (19890308) [Alko, SF-00101 Helsinki, Finland].
40.Kobayashi, R., Miwa, T., Yamamoto, S. and Nagasaki, S. (1980) Purification and characterization of a yeast cell-lytic enzyme of a species of Rhizoctonia. J. Ferment. Technol, 58(3):319-326.
41.Kobayashi, R., Miwa, T., Yamamoto, S. and Nagasaki, S. (1981) Properties and mode of action of beta-1,3-glucanase from Rhizoctonia sp. [fungi]. J. Ferment. Technol, 59(1):21-26.
42.Kusama, S., Kusakabe, I. and Murakami, K. (1986) Purification and some properties of deta-1,3-glucanase from Streptomyces sp. Agric. Bio. Chem, 50(5): 1101-1106.
43.Laurent, T. C. and Killander, J. (1964) A theory of gel filtration and its experimental verification. J. Chromatogr, 14:317-330.
44.Lee, C. J., Horsley, R. D., Manthey, F. A. and Schwarz, P. B. (1997) Comparisons of β-glucan content of barley and oat. Cereal Chem, 74(5): 571-575.
45.I. U. B. (1984) Enzyme nomenclature; recommendations of the nomenclature committee of the international union of biochemistry. Academic Press, Orlando.
46.Martin, D. F., Priest, F. G., Todd, C. and Goodfellow, M. (1980) Distribution of beta-glucanases whitin the genus Bacillus. Appl. Environ. Microbiol, 40(6): 1136-1138.
47.McCleary, B. V. (2000) Importance of enzyme purity and activity in the measurement of total dietary fiber and dietary fiber components. Journal-of-AOAC-International, 83 (4): 997-1005.
48.Meratad, O. and McNab, J. M. (1975) The effect of heat treatment and enzyme supplementation on the nutritive value of barley for broiler chicks. Br. Poult, 16(1): 68-72.
49.Moss, B. R., Beechler, C. W., Newman, C. W. and Ei-Negoumy, A. M. (1977) Enzyme supplementation of broilers rations. Poult. Sci, 56:1741-1745.
50.Notario, V. (1982) Beta-glucanases from Candida albicans : purification, characterization and the nature of their attachment to cell wall component [fungi]. J. Gen. Microbiol, 128:747-759.
51.Notario, V., Villa, T. G., Benitez, T. and Villanueva, J. R. (1976) Beta-glucanase in the yeast cryptococcus albidus var. aerius. Production and separation of beta-glucanases in asynchronolds culture. Can. J. Microbiol, 22(2):261-268.
52.Petersen, B. O., Krah, M., Duus, J. O. and Thomsen, K. K. (2000) A transglycosylating 1,3(4)-beta-glucanase from Rhodothermus marinus. NMR analysis of enzyme reactions. European-Journal- -Biochemistry, 267 (2) : 361-369.
53.Pettersson, D. and Aman, P. (1989) Enzyme supplementation of a poultry diet containing rye and wheat. Br. J. Nutr, 62:139-146.
54.Pitson, S. M., Seviour, R. J. and McDougall, B. M. (1997) Purification and characterization of an extracellular beta -glucosidase from the filamentous fungus Acremonium persicinum and its probable role in beta -glucan degradation. Enzyme and Microbial Technology, 21:182-190.
55.Pitson, S. M., Seviour, R. J., and McDougall, B. M. (1993) Noncellulolytic fungal beta-glucanases: their physiology and regulation. Enzyme- and-Microbial-Technology, 15 (3):178-192.
56.Pitson, S. M., Seviour, R. J. and McDougall, B. M. (1996) Proteolytic inactivation of an extracellular (1,3)-beta-glucanase from the fungus Acremonium persicinum is associated with growth at neutral or alkaline medium pH. FEMS- Microbiology-Letters, 145 (2) 287-293.
57.Reese, E. T. (1977) Recent Advances in Phytochemistry 11 (Loewus, F. A. and Runeckles, V. C., eds) Plenum, New York, pp. 311-367.
58.Reyes, F. and Lahoz, R (1977) Variation in lysis of walls of Sclerotinia fructigena with age of culture. J. Gen. Microciol, 98:607-610.
59.Ridout, C. J., Coley-Smith, J. R. and Lynch, J. M. (1986) Enzyme activity electropheoretic profile of extracellular protein induced in Trichoderma spp. by cell walls of Rhizoctonia solani. J. Gen. Microbiol, 132(8):2345-2352.
60.Sanchez, M., Nombela, C., Villanueva, J. R. and Santos, T (1982) Purification and partial characterization of a developmentally regulated 1,3-beta-glucanase from Pencillium italicum [Fungi]. J. Gen. Microbiol, 128:2047-2053.
61.Santos, T., Villanueva., J. R. and Nombela, C. (1977) Production and catabolite repression of Penicillium italicum beta-glucanases. J. Bacteriol, 129(1):52-58.
62.Santos, T., Villanueva., J. R. and Nombela, C. (1978) Regulation of beta-1,3-glucanase synthesis Penicillium italicum. J. Bacteriol, 133(2):542-548.
63.Shingo, N. and Takahisa, H. (1993) Purification and properties of an extracellular endo-1,4-beta-glucanase from suspension- cultured poplar cells. Plant Cell Physical, 34(7): 1009-1013.
64.Shinshi, H. and Kato, K. (1983) Physical and chemical properties of beta-1,3-glucanase from cultured tobacco cells [Nicotiana tabacum]. Agric. Biol. Chem, 47(7):1455-1460.
65.Smith, D. (1982) Liquid nitrogen storage of fungi.Trans. Br. Mycol. Soc, 79: 415-421.
66.Smith, D.(1984). Maintenance of fungi. In B.E Kirsop and J. J. S. Snell (Eds.), Maintenance of Microorganism: A Manual of Laboratory Methods. Academic Press, London. pp. 83-108.
67.Sone, Y., R. Okuda, N. Wada, E. Kishida, and A. Misaki. (1985). Structure and antitumor activities of polysaccharides isolated from fruiting body and growing culture of mycelium of Ganoderma alucidium. Agric. Biol. Chem, 49:2641-2653.
68.South, J. B. (1997) Estimation of endo beta-glucanase activity in malt using a viscometric method. Journal-of-the-Institute-of-Brewing, 103 (1):3-6.
70.Stasinopoulos, S. J., and R. J. Seviour. (1989). Exopolysacchsride formation by isolates of Cephalosporium and Acremonium. Chem. Pharm. Bull, 39(3):798-800.
71.Takashi Akiyama, Hanae Kaku, Naoto Shibuya. (1998). Purification, characterization and NH2-terminal sequencing of an endo-(1→3, 1→4)-β-glucanase from rice(oryza ativa)bran. Plant science, 134: 3-10.
72.Totsuka, A. and Usui, T. (1986) Separation and characterization of the endo-beta-(1 to 3)-D-glucanase from Rhizoctionia solani. Agric. Biol.Chem, 50(3):543-550.
73.Turner, P. D. (1965). Infection of oil palms by Ganoderma. Phytopathology, 55:937-943.
74.Villa, T. G., Notario, V., Benitez, T. and Villanueva, J. R. (1976) Purification of an exo-1,3-beta-glucanase from Candida utilis. Can. J. Biochem, 54(1):927-934.
75.Walsh, G. A., Power, R. F. and Headon, D. R. (1993) Enzymes in the animal feed industry. Trends in Biotechnol, 11:424-428.
76.Walsh, G. A., Murphy, R. A., Killeen, G. F., Headon, D. R. and Power, R. F. (1995) Technical note: Detection and quantification of supplementation fungal β-glucanase activity in animal feed. J. Anim. Sci, 73:1074-1076.
77.Wang G., Zhang J., Mizuno T., Zhuang C., Ito H., Mayuzumi H., Okamoto H. and Li J. (1993). Antitumor active polysaccharides from the Chinese mushroom Song Shan Lingzhi, the fruiting body of Ganoderma tsugae. Biosci. Biotech. Biochem, 57(6):894-900.
78. Wood, P. J.(1994) Evaluation of oat bran as a soluble fiber source. Characterization of oat β-glucan and its effects on glycernic response. Carbohydrate Polymers, 25:331-336.
79.Wood, P. J. (1981) The use of dye-polysaccharide interactions in beta-D-glucanase assay. Carbohydr. Res, 94:C19.
80.Yamamoto, R. and Nevins, D. J. (1983) Degradation of a glucan containing beta-(1 to 3) and beta-(1 to 6) linkages by exo-(1 to 3)-beta-D-glucanase [isolated from a Japanese marine alga known as “Arame”, Eisenia bicyclis]. Carbohydr. Res, 122(2):217-226.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 周清海(1994)東南亞華人社區的語文教育問題。華文世界,72,14-18。
2. 邱琡雯(1997)從國際化到異文化─一個新的思考座標。社教雙月刊,82,36-37。
3. 毛國楠(1995)國中教師的樂觀信念、自我效能、對壓力的認知評估、因應方式與工作調適及身心健康的關係。教育心理學報:28,177-194。
4. 邱琡雯(1999)在地國際化:日本農村菲律賓新娘。當代,23(141),108-117。
5. 邱琡雯(2000)在臺東南亞外籍新娘的識字/生活教育:同化?還是多元文化?。社會教育學刊,29,197-219。
6. 夏曉鵑(1997)女性身體貿易:台灣/印尼新娘貿易的階級與族關係分析。東南亞區域研究通訊,2,72-83。
7. 黃世雄(1994)台灣地區外籍勞工生活適應問題及其相關因素之研究。中國文化大學勞工研究所碩士論文。
8. 賈馥茗(1968)自知與大學生活之適應。師大學報,13,95-145。
9. 1. 丁懷謙(2000)。食藥用菇多醣體之免疫生理活性。食品工業32(5) 28-42。
10. 2. 王伯徹、邱世浩、黃仁彰(1998)。食用菇保健食品特輯。食品工業30(5)1-36。
11. 3. 王伯徹、林錦堂、華傑(1991)。靈芝菌種之長期保存。中國農業化學會誌28(1)86-93。
12. 5. 唐瑞菁、程梅萍(1992)。靈芝培養基的探討-酵母抽出物的取代。國立雲林技術學院學報4(1)145-156。
13. 10.許瑞祥(1995)。靈芝的研究現況與展望。生物產業 (Bioindustry),6(4),289-296。
14. 12.傅偉光(1999)。靈芝中機能性成分分析方法之簡介。健康靈芝(冬季號),15-18。
 
系統版面圖檔 系統版面圖檔