(3.231.166.56) 您好!臺灣時間:2021/03/08 12:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇梅英
研究生(外文):Mei-Ying Su
論文名稱:幾丁聚醣對油脂與膽固醇包覆及吸收影響之研究
論文名稱(外文):Studies on the Effects of Chitosan on the Enrobing and Absorption Ability of Fats and Cholesterol
指導教授:游銅錫林麗雲林麗雲引用關係
指導教授(外文):Tung-Hsi YuLi-Yun Lin
學位類別:碩士
校院名稱:大葉大學
系所名稱:食品工程研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:163
中文關鍵詞:幾丁質幾丁聚醣油脂膽固醇脂肪酸去乙醯分子量倉鼠
外文關鍵詞:chitinchitosanlipidscholesterolfatty aciddeacetylationmolecularSyrian
相關次數:
  • 被引用被引用:21
  • 點閱點閱:870
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:137
  • 收藏至我的研究室書目清單書目收藏:1
幾丁聚醣(chitosan)為具有生理活性的生物高分子,應用於食品營養方面,可降低人體對於食物中油脂的吸收。本研究主要探討以蟹殼為來源之幾丁質,利用化學法製備成各種不同去乙醯度及不同分子量之幾丁聚醣,再與市售油脂(包括沙拉油、氫化油及豬油)混合,模擬腸胃道環境進行消化作用,找出個別油脂與何種去乙醯度、何種分子量之幾丁聚醣具有最佳吸附效果及最適用量搭配比例,可將脂解酶(lipase)及膽鹽(bile salt)分解脂質作用降至最低。以上述所得條件,再進一步應用於食品製造,模擬腸胃道環境,探討實際製成食品(豬油---香腸、氫化油---油條)後,所添加的幾丁聚醣是否仍能對油脂作有效的包覆。除此之外,並以添加幾丁聚醣之食品進行揮發性成分分析及官能品評,比較添加幾丁聚醣與否之食品其揮發性香氣成分有何差異,以及於風味、嚐味與整體喜好性的接受度。最後再進行動物試驗,將幾丁聚醣分別以高、低劑量二組及纖維素為對照組添加於動物飼料中,分析比較活體中脂質代謝情形及對於生長的影響。結果顯示,以分子量約一百萬左右之食品級幾丁質,利用化學法反應不同時間所製備之幾丁聚醣其分子量介於100-500 kDa之間,而去乙醯度為約75-96 %,顆粒大小120 mesh ;於模擬消化道環境下,相同去乙醯度條件,幾丁聚醣的分子量愈高,對油脂的包覆性愈佳,所產生的游離脂肪酸愈少,而在相同分子量條件,幾丁聚醣去乙醯度愈高,對油脂的包覆性愈佳,所產生的游離脂肪酸也少,其最佳吸附油脂效果之幾丁聚醣為分子量約490 kDa,去乙醯度約96 %,在吸附油量方面,為每1 g幾丁聚醣用量對三種油脂於10 g以下均有明顯吸附效果;在應用於製造香腸及油條,以此幾丁聚醣對含油量1:10 (w/w) 的比例添加,再經由模擬消化道環境作用後發現,添加幾丁聚醣之香腸及油條均較對照組有明顯之包覆油脂效果,在反應後經脂解酶及膽鹽所水解之游離脂肪酸量明顯低於未添加幾丁聚醣者,且經由揮發性成分的鑑定後得知,有添加幾丁聚醣之香腸及油條在以低分子量醛類如亞麻油酸二次氧化生成物2,4-decadieneal 及hexanal所引起的油耗味,其濃度明顯低於未添加幾丁聚醣者,顯示出幾丁聚醣於食品系統中亦具抗脂肪氧化效果,而利用幾丁聚醣作為高脂含量食品的添加,除了降低食品中脂肪為人體吸收外,並且可於不影響食品本身風味情形下,更進一步抑制油耗產生。在官能品評評比風味、嚐味及整體喜好性發現,對於添加幾丁聚醣與否之香腸及油條在95 % 信賴區間之統計分析上無顯著差異,皆能為品評者所接受。而動物試驗中,在與對照組比較之下,添加0.3 %(w/w)或0.7 %(w/w)幾丁聚醣於飼料中確實能明顯降低血液中游離脂肪酸濃度10 %、血液中膽固醇濃度15 %及增加糞便中脂質的排出量,並且,此等劑量之添加,對於實驗動物的生長發育並無顯著影響。
Chitosan is a high molecular weight polymer with significant physiology activity. In food and nutrition applications, chitosan can decrease the absorption of lipids in vivo. The objectives of the research were to study effects of chitosan prepared from crab shell with different degree of deacetylation (D.D.) and various molecular weight (M.W.) on the absorption of lipids in vivo. In a simulating system of human digestive tract, individual chitosan was mixed with three kinds of lipids (include salad oil, pork fat, and hydrogenised oil) individually to found out what kinds of chitosan can absorb larger amount of lipids to avoid the hydrolysis of them by lipase and bile salt.
The best chitosan in optimum use dosage was then applied in high fat content food, for example, fried dough stick and fried sausage, to realize its function in decreasing fat absorption in vivo. Effect of the addition of chitosan on flavor and volatile composition and overall preference of these high fat content food was also studied.
To investigate effects of chitosan supplement on the lipid metabolism in vivo, and the growth of experimental animal, the best chitosan in different use dosage was then applied to animal feeding trail. In animal feeding trial, male Syrian were randomly divided in to three groups and fed with synthetic diet (AIN-76) containing different level of chitosan, i.e. control (5 % cellulose in diet), G-1 (0.3 % chitosan, 4.7 % cellulose in diet), and G-2 (0.7 % chitosan, 4.3 % cellulose in diet ), individually for 5 weeks.
The M.W. and D.D. of chitosan prepared from chitin by chemical modification and various reaction time was found amoung 100-500 kDa and 75-96 %, individually. The particle size of chitosan prepared was around 120 mesh. In system of simulating human digestive tract, when the D.D. was the same, the chitosan having higher M.W. was found to have better function in lipids absorption and less free fatty acids will be released. When the M.W. was the same, the chitosan having higher D.D. was found to have better function in lipids absorption and less free fatty acids will be released. The chitosan having a M.W. around 490 kDa and having a D.D. 96 % was found to be the best one in fat absorption. The largest absorption amount of lipids for one gram of chitosan is 10 mL. Addition of the chitosan having a M.W. around 490 kDa and a D.D. 96 % in a use amount of one gram chitosan per 10 g fat to sausage and fried dough stick demonstrated that chitosan had good lipids absorption ability in high fat contained food. In the analysis of volatile compounds in fried sausage and fried dough stick with or without chitosan added, it was found that amount of lipid oxidation volatile products, i.e. 2,4-decadieneal and hexanal, was lower in fried sausage or fried dough stick with chitosan added than that without chitosan added. The addition of chitosan in fried sausage or in fried dough stick would not affect the overall preference of these product. In a five weeks’ animal feeding trial, the levels of triglycerides, NEFA, cholesterol, LDL-cholesterol and HDL-cholesterol in serum and stool lipid of the tested Syrian were determined. The results showed that NEFA and cholesterol in serum of experimental animal decrease 10 % and 15 %, individually. The stool lipid volume of the tested Syrian with chitosan supplement in diet was higher than that without chitosan supplement. In addition, chitosan was found having no side effect in growth of animals in a supplement amount of 0.3 % (w/w) or 0.7 %(w/w).
封面內頁
簽名頁
授權書………………………………………………………………iii
中文摘要……………………………………………………………iv
英文摘要……………………………………………………………vi
誌謝…………………………………………………………………ix
目錄…………………………………………………………………x
表目錄………………………………………………………………xiii
圖目錄………………………………………………………………xiv
第一章 緒 論……………………………………………………… 1
第二章 文獻回顧
2.1 幾丁質與幾丁聚醣製造方式……………………………….4
2.2 幾丁質與幾丁聚醣性質及應用……….……………………16
2.3 幾丁聚醣對脂肪及膽固醇吸收之影響...………..…………23
2.4 香氣成分分析…………………………………………….....31
2.5 動物試驗………………………….…………………………40
第三章 不同去乙醯度及不同分子量幾丁聚醣之製備
摘 要…………………………………………………………..…45
3.1 前言……………………………………….…………………46
3.2 實驗材料與設備…………………………….………………50
3.3 實驗方法……………………………………………….……53
3.4 結果與討論………………………………….………………57
3.5 結論………………………………………………………….69
第四章 於模擬人體消化道環境中,尋找具最佳吸附油脂效果之幾丁聚醣及其最適用量之探討
摘 要……………………………………………………………..71
4.1 前言……………………………………………………….....73
4.2 實驗材料與設備………………………………………….....75
4.3 實驗方法…………………………………………………….77
4.4 結果與討論………………………………………………….80
4.5 結論……………...…………………………………………..90
第五章 模擬人體消化道環境下,幾丁聚醣應用於高油脂食品中
對油脂吸附情形之探討
摘 要……………………………………………………………..91
5.1 前言……………………………………………………….....92
5.2 實驗材料與設備………………………………………….....94
5.3 實驗方法…………………………………………………….95
5.4 結果與討論………………………………………………….100
5.5 結論……………...…………………...……………………...102
第六章 添加幾丁聚醣對油炸香腸及油條香氣與風味影響之研究
摘 要……………………………………………………………..103
6.1 前言……………………………………………………….....105
6.2 實驗材料與設備………………………………………….....109
6.3 實驗方法…………………………………………………….110
6.4 結果與討論………………………………………………….112
6.5 結論……………...…………………………………………..122
第七章 幾丁聚醣對倉鼠體中脂肪代謝影響之探討
摘 要……………………………………………………………..123
7.1 前言……………………………………………………….....124
7.2 實驗材料與設備………………………………………….....128
7.3 實驗方法…………………………………………………….130
7.4 結果與討論………………………………………………….134
7.5 結論……………...…………………………………………..149
第八章 總結論及展望……………………………………………..151
參考文獻…………………………………………..…...…………...154
表目錄
表2.1 常見之含幾丁質生物………………………………………7
表2.2 幾丁質/幾丁聚醣及其衍生物之機能性
與食品工業上之用途………………………………………22
表3.1 原料幾丁質規格……………………………………………52
表3.2 不同離子強度下黏度常數a、K、R2值…………………..56
表3.3 不同分子量及去乙醯度幾丁聚醣之編號…………………68
表4.1 不同去乙醯度及分子量幾丁聚醣於模擬人體消化道環境
下對油脂包覆後所產生之游離脂肪酸含量百分比………81
表5.1 香腸配方………………………………………………...….98
表5.2 油條配方……………………………………………………99
表5.3 添加S1幾丁聚醣之香腸及油條經模擬消化道
作用後所產生之游離脂肪酸量比較………………………101
表6.1 添加幾丁聚醣油條之揮發性成分…………………………114
表6.2 添加幾丁聚醣香腸之揮發性成分…………………………117
表6.3 添加幾丁聚醣之油炸香腸及油條中揮發性成分之比較…120
表6.4 添加幾丁聚醣之油炸香腸及油條官能品評結果…………121
表7.1 實驗飼料組成………………………………………………133
表7.2 飼料中幾丁聚醣的添加對倉鼠生長參數的影響…………136
圖目錄
圖2.1 幾丁質在生物體內排列方式………………………………8
圖2.2 幾丁質與幾丁聚醣之化學構造式…………………………9
圖2.3 製備幾丁質的化學法(Hackman及Shimakara法)…..……13
圖2.4 萃取微生物幾丁聚醣的方法………………………………14
圖2.5 脂肪消化吸收過程…………………………………………30
圖2.6 梅納反應的基本反應機制…………………………………33
圖2.7 梅納反應第一步,醣與胺基酸進行縮合…………………34
圖2.8 Amadori重組反應(路徑一)..……………………………..35
圖2.9 Amadori重組反應(路徑二)..……………………………..36
圖3.1 還原黏度與去乙醯度96 %、分子量487396之
不同濃度幾丁聚醣溶液關係圖…………………………....59
圖3.2 還原黏度與去乙醯度96 %、分子量266358之
不同濃度幾丁聚醣溶液關係圖…………………………...60
圖3.3 還原黏度與去乙醯度96 %、分子量95139之
不同濃度幾丁聚醣溶液關係圖…………………………...61
圖3.4 還原黏度與去乙醯度88 %、分子量488590之
不同濃度幾丁聚醣溶液關係圖…………………………...62
圖3.5 還原黏度與去乙醯度88 %、分子量254694之
不同濃度幾丁聚醣溶液關係圖…………………………...63
圖3.6 還原黏度與去乙醯度88 %、分子量113357之
不同濃度幾丁聚醣溶液關係圖…………………………...64
圖3.7 還原黏度與去乙醯度77 %、分子量460682之
不同濃度幾丁聚醣溶液關係圖…………………………...65
圖3.8 還原黏度與去乙醯度77 %、分子量254694之
不同濃度幾丁聚醣溶液關係圖…………………………...66
圖3.9 還原黏度與去乙醯度77 %、分子量113445之
不同濃度幾丁聚醣溶液關係圖…………………………....67
圖4.1 去乙醯度為96 %之三種不同分子量幾丁聚醣
吸附油脂後所產生游離脂肪酸含量百分比………………82
圖4.2 去乙醯度為88 %之三種不同分子量幾丁聚醣
吸附油脂後所產生游離脂肪酸含量百分比………………83
圖4.3 去乙醯度為77 %之三種不同分子量幾丁聚醣
吸附油脂後所產生游離脂肪酸含量百分比………………84
圖4.4 分子量為490 kDa之三種不同去乙醯度幾丁聚醣
吸附油脂後所產生游離脂肪酸含量百分比………………85
圖4.5 分子量為250 kDa之三種不同去乙醯度幾丁聚醣
吸附油脂後所產生游離脂肪酸含量百分比……….…..….86
圖4.6 分子量為100 kDa之三種不同去乙醯度幾丁聚醣
吸附油脂後所產生游離脂肪酸含量百分比…..…………..87
圖4.7 一克幾丁聚醣於模擬人體消化道下,吸附不同量
之油脂後所產生游離脂肪酸含量百分比…………………89
圖6.1 亞麻油酸氧化生成氫過氧化物的過程………..…………..107
圖6.2 氫過氧化物的二次氧化生成物……………………..….….108
圖7.1 控制組C之生長參數圖……………………………….…..137
圖7.2 G-1組之生長參數圖………………..…………..…….…...138
圖7.3 G-2組之生長參數圖………………………………..……...139
圖7.4 倉鼠血清中三酸甘油酯濃度的變化………………..…..…143
圖7.5 倉鼠血清中NEFA濃度的變化………………………....…144
圖7.6 倉鼠血清中膽固醇濃度的變化……………………..…..…145
圖7.7 倉鼠血清中低密度脂蛋白濃度的變化………………..…..146
圖7.8 倉鼠血清中高密度脂蛋白濃度的變化…………..………..147
圖7.9 倉鼠糞便中總脂質含量的變化……………………..……..148
參考文獻
1. 謝馥如(2001)脂質的消化與吸收,食品工業33(5):26-39。
2. 袁國芳(2000)幾丁質/幾丁聚醣在膳食與醫療之助益及潛在問題,食品工業月刊32(4):1-8。
3. 蘇俊旗(2000)含硫率對磺酸幾丁聚醣與磺酸苯幾丁聚醣抑菌作用及水溶性之影響,大葉大學食品工程研究所碩士論文。
4. 江孟燦、陳敏俐(1999)膳食幾丁聚醣對大白鼠脂質代謝的影響,中國農業化學會誌37(1):20-31。
5. 黃怡菁(1999)生體高分子-生物科技的新契機,食品資訊161:44-47。
6. 陳美惠、莊淑惠、吳志律(1999)幾丁聚醣的物化特性,食品工業月刊31(10):1-6。
7. 陳慶源(1999)以真菌發酵法生產幾丁聚醣,食品工業月刊31(10):7-18。
8. 袁國芳(1999)幾丁與幾丁聚醣在食品工業上之應用,食品工業月刊31(10):19-25。
9. 王三郎(1999)海洋未利用生物資源之回收再利用-幾丁質及幾丁聚醣,生物資源生物技術1(1):1-8。
10. 李遠豐(1998)蟹殼膠特性應用及其生產技術9:27-30。
11. 江晃榮(1996)新生技產品:幾丁質˙幾丁聚醣(甲殼類)產業現況與展望,經濟部IT IS叢書。
12. 王三郎(1996)水產資源利用學,高立圖書出版。
13. 簡淑倩、劉一慧(1994)水產食品22:13。
14. 林孫基、劉仁煥(1994)以生物性高分子-幾丁質(chitin)衍生物處理危害性有機污染廢液之研究,樹德學報15:147-193。
15. 蔡敏郎(1993)不同分子量、不同去乙醯度的幾丁聚醣溶液的流變性質與膠囊物性的關係,國立台灣海洋大學水產食品科學研究所碩士論文。
16. 林俊煌(1992)不同去乙醯程度之幾丁聚醣的流變性質與鏈柔軟度、膜之物理特性的關係,國立台灣海洋大學水產食品科學研究所碩士論文。
17. 林欣榮(1991),簡介柑桔屬果汁之褐變。食品工業23(7):10-27。
18. 彭邱妹、王家仁(1991)官能檢查方法,食品官能檢查手冊,食品工業發展研究所,pp10-14。
19. 何其儻(1991),食品加工過程所生成的香味,香料資訊3 (3) :49-56。
20. 王綺芬(1989)蟹殼幾丁質產品理化性質測定及製備方法之研究,國立台灣大學食品科技研究所碩士論文。
21. 李勳宜(1988)草蝦幾丁聚醣之製備及其應用研究,國立台灣大學食品科技研究所碩士論文。
22. 謝明哲、葉松玲、張仙平(1983)動物營養試驗,營養學實驗,台北醫學院保健營養學系印行,pp125-138。
23. Muzzarelli, R. A. A., Frega, N., Miliani, M., Muzzarelli, C. and Cartolari, M. (2000) Interactions of chitin, chitosan, N-lauryl chitosan and N-dimethylaminopropyl chitosanwith olive oil. Carbohydrate Polymer 43:263-268.
24. Shahide, F., Vidana, K. J., Arachchi, J. and Jeon, Y. (1999) Food applications of chitin and chitosan. Trends in Food Sci.&Technol., 10:37-51.
25. Han, L. K., Kimura, Y. and Okuda, H. (1999) Reduction in fat storage during chitin-chitosan treatment in mice fed a high-fat diet. International J. Obesity. 23(2):174-179.
26. Bitou, N., Ninomiya, M., Tsujita, T. and Okuda, H. (1999) Screening of lipase inhibitors from marine algae. Lipids 34: 441-445.
27. Nagaoka, S., Miwa, K., Eto, M., Kuzuya, Y. and Hori, G. (1999) Soy protein peptic hydrolysate with bound phospholipids decreases micellar solubility and cholesterol absorption in rats and Caco-2 cells. J. Nutr. 129: 1725-1730.
28. Koide, S. S.(1998)Chitin-chitosan:properties. Benefits and risks. Nutrition Research. 18(6):1091-1101.
29. Okamoto, Y., Miashita, M. and Nanno, M. (1997) Effects of chitin and chitosan particles on BALB/c mice by oral and parenteral administration. Biomaterials. 18:591-595.
30. Minich, D. M., Vonk, R. J. and Verkade, H. J. (1997) Intestinal absorption of essential fatty acids under physiological and essential fatty acids deficient conditions. J. Lipid Res. 38: 1709-1721.
31. Zhang, F. L., Kamp, F. and Hamilton, J. A. (1996) Dissociation of long and very long chain fatty acids from phospholipid bilayers. Biochemistry. 35: 16055-16060.
32. Nil. (1996) Market of chitin and chitosan. Bio. Industry, 13 (3):52-61.
33. Deuchi, K., Kanauchi, O., Imasato, Y. and Kobayashi, E. (1995) Effect of the viscosity or deacetylation degree of chitosan on fecal fat excreted from rat fed on a high-fat diet. Biosci. Biotech. Biochem., 59:781-785.
34. Deuchi, K., Kanauchi, O., Shizkukuishi, M. and Kobayashi, E. (1995) Continuous and massive intake of chitosan affect mineral and fat-soluble vitamin status in rat fed on a high fat diet. Biosci. Biotech. Biochem., 59:1211-1216.
35. Hirano, S. and Akiuama, Y. (1995)Absence of hypocholestero- lemic action of chitosan in high serumcholesterol rabbits. J. Sci. Food Agric., 69:91-94.
36. Kanauchi, O., Deuchi, K., Imasato, Y., Shizukuishi, M. and Kobayashi, E. (1995) Mechanism for the inhibition of fat digestion by chitosan and for the synergistic effect of ascorbate. Biosci. Biotech. Biochem., 59:785-790.
37. Kanauchi, O., Deuchi, K., Imasato, Y. and Kobayashi, E. (1994) Increase effect of a chitosan and ascorbit acid mixture on dietary fat excretion. Biosci. Biotech. Biochem., 58:1617-1620.
38. Deuchi, K., Kanauchi, O., Imasato, Y. and Kobayashi, E. (1994) Decreasing effect of chitosan on the apparent fat digestibility by rat fed on high fat diet. Biosci. Biotech. Biochem., 58:1613-1616.
39. Ikeda, I., Sugano, M., Yoshida, K., Sasaki, E., Iwamto, Y. and Hatano, K. (1993) Effects of chitosan hydrolysates on lipid absorption and on serum and liver lipid concentrations in rats. J. Agri. Food Chem., 41:431-435.
40. Lehoux, J. G. and Grondin, F. (1993) Some effect of chitosan on liver function in rat. Endocrinol., 132:1078-1084.
41. Goulinet, S. and Chapman, M. J. (1993) Plasma lipoproteins in the Golden Syrian hamster: heterogeneity of apo B-and apo AI-containing particles. J Lipid Res 34: 943-959.
42. Levy, E., Garofalo, C., Thibault, L., Dionne, S., Daoust, L., Lepage, G. and Roy, C. C. (1992) Intraluminal and intracellular phases of fat absorption are impaired in essential fatty acid deficiency. Am. J. Physiol. 262: P319-326.
43. Manura, J.J. and Hartman, T.G.(1992)Applications of a short path thermaldesorption GC accessory. Am Lab., 24(8):46-52.
44. Rineoes, N. J. (1991) Methodologies for the quantification of purge and trap thermal desorption and direct thermal desorption analyses.:Scientific instrument Services, Inc. Application Note No. 9.
45. Bergholz, C. M., Jandacek, R. J. and Thomson, A. B. R. (1991) J. Gastroenterol. 5:137.
46. Hirose, N., Inoue, T., Nishihara, K., Sugano, M., Akimoto, K., Shimize, S. and Yamada, H. (1991) Inhibition of cholesterol absorption and synthesis in rats by sesamin. J. Lipid Res. 32:629-638.
47. Tanaka, Y., Tanioka, S., Tanaka, M., Tanigawa, T., Kitamura, Y., Minami, S., Hirano, S., Itakura, C., Seino, H., Akiyama, Y., Nonaka, I., Janvara, N. and Kawakami, T. (1990) Chitosan as an ingredient for domestic animal feeds. J. Agric. Food Chem., 38:1214-1217.
48. Nil, (1989) Bio. Industry, 6:456.
49. Thomson, A. B., Keelan, R. M., Garg, M. L. and Clandinin, M. T. (1989) Intestinal aspects of lipid absorption: in review. Can. J. Physiol. Pharmacol. 67:179-191.
50. Sugano, M., Watanabe, S., Kishi, A., Izume, M. and Ohtahara, A.(1988)Hypocholesterolemic action of chitosan with different viscosity in rat. Lipid, 23:187-191.
51. Blackwell, J. (1988) Physical methods for the determination of chitin structure and conformation. Methods in enzymology, 16:435-442.
52. Saito, H., Tabeta, R. and Ogawa, K. (1987) Highresolution solid-salt 13C NMR study of chitosan and it is salts with acids. Macrol, 20:2424.
53. Kurita, K. (1986) Chemical modifications of chitin and chitosan. Chitin in nature and technology, pp.287-293.
54. Muzzarelli, R. A. A., and Rocchetti, R. (1985) Carbohydrate Polymers, 5:461.
55. Muzzarelli, R. A. A. (1985) The Polysaccharides, Aspinalli, eds., Academic Press Inc., Orlando, p417.
56. Balackwell, J. and Weih, M. A. (1984) In chitin, chitosan and related enzymes. Zikakis, eds., Academic Press Inc., Orlando, p257.
57. Shimahara, K., Takiguchi, Y., Ohkouchi, K., Kitamura, K. and Okada, O. (1984) Chitin, Chitosan and related enzymes, ed. Zikakis, P. J., pp.239-255.
58. A.O.A.C. (1984) Official methods of analysis of the Assiociation of Official Analytical Chemists. 14th edition, Washington D. C., U. S. A.
59. Knorr, D. (1984) Use of chitosan polymers in food-A challenge for food research and development. Food Technol., Journal:85-97.
60. Roberts, F. A. G. and Domszy, G. J. (1982) Determination of the viscometric constants for chitosan. Int. Biol. Macromol., 4:374-377.
61. Cosio, I. G., Fisher, R. A. and Carroad, P. A. (1982) Bioconversion of shellfish chitin wastes: waste pretreatment, enzyme production, process design and economic analysis. J. Food Sci. 47: 901.
62. Sugano, M., Fujikawa, Y., Hiratsuji, K., Nakashima, N. and Hasegawa, Y.(1980)A novel use of chitosan as a hypocholesterolemic agent in rat. Am. J. Clin. Nutr., 33:787-793.
63. Horwitz, W.(1980)Official methods of analysis. Association of Official Analytic Chemists. 13 th ed., p.1018.
64. Friedman, H. I. and Nylund, B. (1980) Intestinal fat digestion, absorption and transport. Am. J. Clin. Nutr. 33:1108-1139.
65. Thomson, A. B. R. (1978) Intestinal absorption of lipids: Influsence of the unstirred water layer and bile acid micelle. In disturbances in lipid and lipoprotein. American Physiological Society. Bethesda, Md., pp29-55.
66. American Institute of Nutrition (1977) Report of the American Institute of Nutrition ad hoc committee on standard for nutritional studies. J Nutr 107: 1340-1349.
67. Min, B. S., Ina, K., Peterson, R. J. and Chang, S. S. (1977) The alkylbenzene in roast beef. J. Food Sci. 42:503.
68. Tressl, R. D., Holzer, M. and Kossa, T. (1977) Formation of flavor components in asparaus. Ⅱ. Formation of flavor components in cooked asparagus. J. Agric. Food Chem. 25:459-467.
69. Toei, K. and Kohara (1976) A conductometric method for colloid titration. Analytical Chimica Acta., 83:59-65.
70. Stanly, L. W., Watters, G. G., Chan, G. B. and Marcer, M. J. (1975) Lactose and other enzymes bound to chitin with glutaraldehyde. Biotech. And Bioeng, 17:315.
71. Lasser, M. L., Roheim, P. S., Diane, E. and Eder, H. A. (1973) Serum lipoprotein of normal and cholesterol-fed rat. J Lipid Res 14: 1-8.
72. Liebich, H. M., Douglas, D. R., Zlatkis, A., Muggler, C. F. and Donzel, A. (1972) Volatile compoents in roast beef. J. Agric. Food Chem. 20:96-104.
73. Snipes, R. L. (1986) The effects of essential fatty acid deficiency on the ultrastructure and functional capacity of the jejunal epithelium. Lab. Invest.18: 179-189.
74. Folch, M., Lee, M. and Solane, G. M. (1957) A simple method for the isolation and purification of total lipid from animal tissue. J. Biol. Chem., 226:497-509.
75. Hackman, R. H. (1954) Austr. J. Biol. Sci., 7:168-178.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔