跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/14 00:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇天佑
論文名稱:高密度電漿設備之開發與乾蝕刻應用
論文名稱(外文):Development of a High-Density-Plasma System for Dry Etch Applications
指導教授:武東星韓 斌
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:乾蝕刻電漿密度Langmuir 探針
相關次數:
  • 被引用被引用:1
  • 點閱點閱:576
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文係結合靜電式探針(Langmuir probe)的檢測技術應用,研究探討在感應耦合式高密度電漿系統中,經由腔體壓力、ICP 功率、RF功率以及氣體流量等參數的改變,量測其解離出來的電漿特性,並將所研究之結果實際應用於製程驗證上,在此研究上我們將應用於SiO2的深度蝕刻,端看電漿的特性變化調整如何使之得到最佳蝕刻效果。
於電漿研究部分,從分析結果顯示不論上述何種參數之改變,其解離出的電漿密度皆在1011 cm-3 以上的等級。尤其當ICP功率由400 W逐漸增加到1200 W時,電漿密度亦可從1.3 ×1011 cm-3上升至3.8 ×1011 cm-3;反觀其它參數之改變,整體電漿密度的變化量為1.9 ×1011到3.2 ×1011 cm-3 之間,這顯示ICP功率對於電漿密度之影響能力最強。此外由於電漿之功率密度計算為離子通量(ion Flux)與離子能量(ion Energy)的乘積值,其同時兼具離子數量與能量之特性,因此對於以物理性為主的蝕刻製程 (ion-driven etch),尤其是在蝕刻率方面,電漿之功率具有決定性的影響,相關實驗同時也由矽石光波導之蝕刻得到驗證。
封面內頁
簽名頁
授權書.................................................iii
中文摘要...............................................iv
英文摘要...............................................v
誌謝...................................................vi
目錄...................................................vii
圖目錄.................................................x
第一章 概論...........................................1
第二章 電漿量測原理與實驗裝置.........................4
2.1電漿原理簡介........................................4
2.1.1電漿之定義........................................4
2.1.2電漿離子化........................................5
2.1.3輝光放電..........................................5
2.1.4電漿電位..........................................6
2.1.5電漿蝕刻機制......................................6
2.1.5.1化學性蝕刻......................................6
2.1.5.2物理性蝕刻......................................7
2.1.5.3化學及物理性蝕刻................................7
2.2系統設計............................................7
2.2.1腔體設計..........................................8
2.2.2 抽氣系統設計.....................................9
2.2.2.1 輸送腔.........................................9
2.2.2.2 反應腔.........................................10
2.2.3氣體管路設計......................................10
2.3電漿量測裝置........................................11
2.4量測方法............................................12
2.4.1靜電式探針量測系統................................12
2.4.1.1系統介紹........................................12
2.4.1.2量測操作方法....................................13
2.4.1.3 I-V特性曲線....................................14
2.4.1.4電漿密度與電子溫度..............................14
2.4.2掃描式電子顯微鏡..................................15
2.4.2.1 SEM工作原理....................................15
2.4.2.2電子束與試片之相互作用..........................16
2.4.2.3二次電子........................................16
2.4.2.4反射電子........................................17
2.4.3膜厚量測儀........................................18
3.1電漿特性的實驗設計..................................19
3.2平面光波導的實驗設計................................19
3.2.1蝕刻測試片........................................20
3.2.1.1平面光波導之製作................................20
3.2.1.2平面光波導模擬設計..............................21
3.2.1.3 BPM_CAD 軟體模擬分析...........................21
3.2.1.4基板的製作......................................22
3.2.1.5 SiO2蝕刻機制...................................23
第四章 結果與討論.....................................25
4.1電漿部分............................................25
4.2平面光波導部分......................................28
4.2.1光罩製作..........................................28
4.2.2製程壓力改變......................................29
4.2.3 ICP Power改變....................................29
4.2.4 RF Power調整.....................................30
4.2.5 Gas Mixture 調整.................................30
第五章 結果...........................................32
參考文獻...............................................33
圖目錄
圖2.1 ICP蝕刻機台......................................36
圖2.2平移式機械臂機構示意圖............................37
圖2.3 Langmuir probe電漿檢測系統......................38
圖2.4 使用Langmuir Probe所量測之電漿密度分布圖........39
圖2.5 圖2-5 電漿I-V特性曲線...........................40
圖2.6 SEM機構部件示意圖...............................41
圖2.7 原子序大小對反射電子產生量 及
二次電子產生量的影響......................42
圖3.1顯示C4F8流量與氟碳聚合物厚度之關係................43
圖4.1不同壓力、功率、流量之電漿密度圖..................44
圖4.2在不同的氬氣流量、腔體壓力、RF功率以及 ICP
功率下,對於電漿密度的變化..................45
圖4.3在不同的氬氣流量、腔體壓力、RF功率以及ICP
功率下,對於直流偏壓的變化..................46
圖4.4在不同的氬氣流量、腔體壓力、RF功率以及
ICP功率,對於離子通量的變化.................47
圖4.5在不同的氬氣流量、腔體壓力、RF功率以及ICP
功率下,對於功率密度的變化...................48
圖4.6 SiO2未蝕刻前的Mask...............................49
圖4.7 SiO2蝕刻3.5μm的圖形..............................49
圖4.8 SiO2被蝕刻8.6μm的圖形............................50
圖4.9 SiO2被蝕刻6.1μm的圖形............................50
圖4.10在不同的腔體壓力下,SiO2的蝕刻率與偏壓值
變化...................................................51
圖4.11 SiO2被蝕刻2.6μm的圖形..........................51
圖4.12 SiO2被蝕刻8.6μm的圖形...........................52
圖4.13 SiO2被蝕刻6.7μm的圖形..........................52
圖4.14在不同的ICP功率下,SiO2的蝕刻率與偏壓值
變化......................................53
圖4.15 SiO2被蝕刻8.6μm的圖形...........................53
圖4.16 SiO2被蝕刻4.1μm的圖形...........................54
圖4.17在不同的RF功率下,SiO2的蝕刻率與偏壓值
變化......................................54
圖4.18 SiO2被蝕刻2.8μm的圖形...........................55
圖4.19 SiO2被蝕刻5.5μm的圖形...........................55
圖4.20 SiO2被蝕刻4μm的圖形.............................56
圖4.21 SiO2被蝕刻5μm的圖形.............................56
圖4.22 SiO2被蝕刻6.5μm的圖形...........................57
圖4.23 SiO2被蝕刻8.3μm的圖形...........................57
圖4.24 SiO2被蝕刻7.6μm的圖形...........................58
[1] E. Kandler, G. Grabhoff, and K. Drescher, “Characterization of plasma in an inductively coupled high-dense plasma source,” Surface and Coating Technology, vol. 74, 539 (1995).
[2] M. A. Lieberman, and A. J. Lichtenberg, “Principles of plasma discharges and materials processing,” John Wiley & Sons Inc., 1994.
[3] O. A. Popov, “High density plasma sources,” Noyes Publications, 1995.
[4] 吳孟奇, 洪勝富, 連振炘, 龔正譯, “半導體元件,” 東華書局, 2001.
[5] 李世鴻, “半導體工程原理,” 全威圖書, 1997.
[6] H. Xiao, “Introduction to Semiconductor Manufacturing Technology,” Prentice Hall Inc., 2001.
[7] C. K. Chung, “Inductively coupled plasma equipment and technology in MEMS,” The Vacuum Society of the R.O.C., vol. 13, 17 (2000).
[8] S. M. SZE, “Semiconductor devices physics and technology,” Murray Hill, 1985.
[9] P. Bhattacharya, “Semiconductor Optoelectronic Devices,” Prentice Hall Inc., 1997.
[10] C. Y. Chang, “ULSI Technology,” Mcgraw Hill Inc., 1996.
[11] M. J. Madou, “Fundamentals of Microfabrication,” CRC, 1997.
[12] A. Grill, “Cold plasma in material fabrication: from fundamentals to applications,” IEEE Press Marketing, 1994.
[13] I. Kaganovich, “Negative ion density fronts,” Phys. Plasmas, vol. 8, 2540 (2001).
[14] K. J. An, H. S. Kim, J. B. Yoo, and G.Y. Yeom, “A study on the characteristics of inductively coupled plasma using multidipole magnets and its application to oxide etching,” Thin Solid Film, vol. 341, 176 (1999).
[15] C. O. Jung, K. K. Chi, B. G. Hwang, J. T. Moon, M. Y. Lee, and J. G. Lee, “Advanced plasma technology in microelectronics,” Thin Solid Film, vol. 341, 112 (1999).
[16] S. T. Jung, H. S. Song, D. S. Kim, and H. S. Kim, “Inductively coupled plasma etching of SiO2 layers for planar lightwave circuits,” Thin Solid Film, vol. 341, 188 (1999).
[17] D. S. Dunn, J. L. Grant, and D. J. McClure, “Texturing of polyimide films during O2/CF4 sputter etching,” J. Vac. Sci. Technol. A, vol. 7, 1712 (1989).
[18] E. Kay, and A. Dilks, “Metal-containing plasma polymerized fluorocarbon films — their synthesis, structure, and polymerization mechanism,” J. Vac. Sci. Technol., vol. 16, 428 (1978).
[19] T. Nakano, and S. Samukawa, “Effects of Ar dilution on the optical emission spectra of fluorocarbon ultrahigh-frequency plasmas C4F8/CF4,” J. Vac. Sci. Technol. A, vol. 17, 686 (1999).
[20] W. W. Stoffels, H. Moriguchi, and K. Tachibana, “Silicon surfaces treated by CF4, CF4/H2, and CF4/O2 rf plasmas: Study by in situ fourier transform infrared ellipsometry,” J. Vac. Sci. Technol. A, vol. 15, 209 (1997).
[21] G. S. Oehrleina, and Y. Kurogi, “Sidewall surface chemistry in directional etching processes,” Materials Science and Engineering, vol. 24, 153 (1998).
[22] T. Tsukada, H. Nogami, Y. Nakagawa, E. Wani, K. Mashimo, H. Sato, and S. Samukawa, “SiO2 Etching using high density plasma sources,” Thin Solid Films, vol. 341, 84 (1999).
[23] T. Y. Su, D. Hsu, E. L. Lin, F. C. Liao, Y. H. Liu, and D. S. Wuu, “Characterization of plasma in an inductively-coupled high-dense plasma source and its etching mechanism,” The Vacuum Society of the R.O.C., vol. 13, 25 (2000).
[24] J. W. Lee, J. F. Donohue, K. D. Mackenzie, R. Westerman, D. Johnson, and S. J. Pearton, “Mechanism of high density plasma processes for ion-driven etching of materials,” Solid-State Electronics, vol. 43, 1769 (1999).
[25] S. B. Cho, H. Y. Song, S. G. Park, and B. H. O, “Improved etch characteristics of SiO2 by the enhanced inductively coupled plasma,” J. Vac. Sci. Technol. A, vol. 19, 1308 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top