跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/03 06:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉昌杰
研究生(外文):Liu Chang-Chieh
論文名稱:以數值方法計算矽鍺半導體之雙量子井結構
論文名稱(外文):The Computation of Double-Quantum Well Energy Level in Silicon-Germanium Compound (Si1-xGex) with Numerical Method
指導教授:韓 斌
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:50
中文關鍵詞:雙量子井
外文關鍵詞:SiGeDouble-Quantum Well
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
  本論文所討論的是以數值方法計算矽鍺半導體之雙量子井結構,利用量子力學中有限深能井的模型,說明Si/Ge半導體兩種晶格常數不相同的材料,此種異質界面要成長成為晶格匹配的材料時所承受的應變知識和Ge(x)Si(1-x)/Si 量子井的構造,進而再利用薛丁格方程式(Schrodinger Equation)和Model-Solid Theory的理論探討計算量子井中,因摻雜濃度X值時的價電帶和導電帶可能侷限的能階大小,再考慮激子的束縛能,得到量子井可能的發光能量。從理論的計算結果我們可由電磁波光譜表上查得所要的光波頻率。由研究計算分析結果中得摻雜濃度和井厚度的的比例控制,均將影響到半導體的光學特性。

ABSTRACT
This work studies mainly on the computation of double quantum well in Silicon-Germanium (Si(1-x)Ge(x)) compound with numerical method and model-solid theory.Because of the hetero-structure interface and lattice constant mismatch between these two elements, there is induced strain in the Ge(x)Si(1-x) layer, which can be adjusted through different concentration (X) and the well width to produce a 4-level system.
By using this 4-level system, it is possible to produce tera-hertz radiation emission, which is important for practical application in Optical Engineerings.

第一章 緒論                     1
第二章 理論背景
2.1 GexSi1-x 的基本性質            4
2.2 應變產生的原因              7
2.3 應變對能帶結構的影響           8
2.4 單子井結構與能帶             9
2.5 量子井束縳能階的計算           10
2.5.1 Model-solid Theory        10
2.5.2 Schrodinger Equation       13
2.6 光與能階躍遷                18
2.7 半導體材料與波長之關係          19
第三章 GexSi1-x / Si半導體雙量子井之研究分析
3.1 GexSi1-x 摻雜各參數的獲得         21
3.2 GexSi1-x 摻雜能階及量子井之計算      23
3.3計算結果討論               26
第四章 結論                      30
參考文獻                        47

1. L. Esaki and R. Tsu, "Superiattice and Negative Differential Conductivity in Semiconducters", IBM J. Res. Develop. Vol.14, pp.61-63 (1970).
2. G. W. Wicks, "Molecualr Beam Epitaxy of Ⅲ-Ⅴ Semiconductors", Critical Reviews in Solid State and Materials Sciences Vol.18, pp.239-243 (1993).
3. A. Y. Cho, "Growth of Periodic Structures by the Molecular-Beam Method", Appl. Phys. Lett. Vol.19, pp.467-470 (1971).
4. Y. Kawai and T. Yamada, "Low Temperature-Stressed Aging Test of 1.3-1.45 µm Laser Diodes Under High Power Operation", Electronics Letters, Vol.26, pp.53-55 (1990).
5. A. Perales, L. Goldstein, B. Fernier, C. Starck, J. L. Lievin, F. Peingt, and J. Benoit, "Multi-Quantum Well Lasers Emitting at 1.5 µm Grown by GSMBE", Electronics Letters, Vol.25, pp.l350-1352(1990).
6. G. C. Osbourn, J. Appl. Phys. 53, 1586 (1982).
7. C. G. Van de Walle and R. M. Martin, Phys. Rev. B 35. 8154 (1987).
8. C. G. Van de Walle and R. M. Martin, Phys. Rev. B 34. 5621 (1986).
9. J. Bardeen and W. Shocklcy, Phys. Rev. 80, 72 (1950).
10. R.M.Martin and C.G. Van de Wallc, Bull. Am. Phys. Soc. 30,(3). 226 (1987).
11. C. G. Van de Walle and R. M. Martin (unpublished).
12. C. G. Van de Walle, Ph.D. dissertation, Stanford University,1986.
13. C. G.Van de Walle and R. M. Martin, J. Vac. Sci. Tcchnol. B4,1055(1986)
14. L.C. Feldman, J. Bevk, B. A. Davidson, H.-J. Gossman, and J. P. Mannaerts, Phys. Rev. Lett. 59, 664 (1987).
15. L. Kleinman, Phys. Rev. 128, 2614 (1962).
16. H. J. McSkimin, J. Appl. Phys. 24, 988 (1953); H. J. McSkimin and P. Andreatch. Jr., ibid. 35, 3312 (1964).
17. C. W. Garland and K. C. Park, J. Appl. Phys. 33, 759 (1962).
18. J. D. Wiley, in Semiconductors and Semimetals, edited by R.K. Willardson and A. C. Beer (Academic, New York, 1975),Vol. 10.
19. D. Gerlich, J. Appl. Phys. 34. 813 (1963).
20. W. F. Boyle and R. J. Sladek, Phys. Rev. B 11, 2933 (1975).
21. F. S. Hickernell and W. R. Gayton, J. Appl. Phys. 37, 462 (1966).
22. W. F. Boyle and R. J. Sladek, Phys. Rev. B 11, 1587 (1975).
23. D. I. Bolef and M. Menes, J. Appl. Phys. 31, 1426 (1960).
24. I. O. Bashkin and G. I. Pereseda, Fiz. Tverd. Tela (Leningrad) 16, 3166 (1974) [Sov. Phys.─Solid State 16, 2058 (1975)].
25. D. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev. 129. 1009(1963).
26. R. B. Hall and J. D. Meakin, Thin Solid Films 63, 203 (1979).
27. R. D. Greenough and S. B. Palmer, J. Phys. D 6, 587 (1973).
28. R. I. Cottam and G. I. Saunders, J. Phys. Chem. Solids 36, 187(1975).
29. Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Techology (Springer, New York, 1982),Group Ⅲ, Vol. 17a-b.
30. W. A. Harrison. E.A. Kraut. J. R. Waldrop, and R. W. Grant,Phys. Rev. B 18. 4402 (1978);R. M. Martin, J. Vac. Sci. Technol. 17,978(1980).
31. K. Kunc and R. M. Martin, Phys. Rev. B 24, 3445 (1981).
32. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, ibid. 140, A1133 (1965); exchange and correlation potentials are based on the data from D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980), as parametrized by J. Perdew and A. Zunger, Phys. Rev. B 23,5048(1981).
33. See, e.g., O. H. Nielsen and R. M. Martin, Phys. Rev. B 32, 3792(1985).
34. G. B. Bachelet, D. R. Hamann, and M. Schluter, Phys. Rev. B 26,4199(1982).
35. Recent quasiparticle-energy calculations confirm this assessment; sec M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390(1986).
36. L. Kleinman, Phys. Rev. B 24, 7412 (1981).
37. Atomic configurations are listed in Ref. 2, and were obtained from tight-binding calculations by D. J. Chadi (private communication). The sensitivity of the model-solid values to the choice of configuration was discussed in Ref. 2
38. C. G. Van de Walle and R. M. Martin, Phys. Rev. B 37 4801 (1988).
39. F. H. Pollak and M. Cardona,Phys .Rev. 172, 816 (1968).
40. D. W. Langer, R. N. Euwema, K. Era, and T. Koda, Phys. Rev. B 2, 4005 (1970).
41. W. C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956); L. Balslev, ibid. 143, 636 (1966).
42. E. O. Kane Phys. Rev. 178, 1368 (1969).
43. J. Wilson/ J.F.B. Hawkes, Optoelectronics An Introduction 2nd ed., Prentice Hall 1989
44. Ben G. Streetman, Solid State Electronic Divices 2nd ed. , Prentice Hall 1980

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊