(34.201.11.222) 您好!臺灣時間:2021/02/25 04:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱吉成
研究生(外文):Chi-Cheng Chiu
論文名稱:交流電源參數對鋁板電解粗化行為之影響
論文名稱(外文):AC Electrograining of Aluminum Plates Using Different Current Waveforms
指導教授:林招松林招松引用關係
指導教授(外文):Chao-Sung Lin
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:168
中文關鍵詞:平版印刷電解粗化腐蝕膜鋁溶蝕量
外文關鍵詞:lithographic printingelectrograiningetch filmweight of dissolved Al
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究針對平版印刷用1050中鋁鋁底材進行電解粗化製程,藉由蝕孔形貌與微結構觀察以及表面性質分析,來瞭解粗化時蝕孔衍生成長機構與與腐蝕膜的生成機制。以交流電源進行電解粗化主要探討的變因包括頻率、波形、正負半週期電量與電流密度峰值等。粗化後鋁板其中一個試片浸漬於鉻酸、磷酸混合液中去除腐蝕膜,藉由量測表面粗糙度、鋁溶蝕量、蝕孔衍生數目與靜電容量進行表面性質分析,並利用SEM觀察蝕孔形貌,另一個試片直接以SEM觀察蝕孔形貌以及橫截面TEM解析蝕孔形貌與腐蝕膜組織結構,並以EDS半定量分析腐蝕膜之組成。
實驗結果顯示,在低頻(1Hz)時,所得蝕孔較粗大,50Hz左右為均勻粗化且蝕孔細小,當高頻(≧250Hz)時則轉變成條狀蝕孔且粗化不均勻,又頻率增加腐蝕膜的層狀結構層與層之間厚度遞減,腐蝕膜重量與鋁溶蝕量也隨頻率增加而減少。採用正弦波和方形波時,頻率的影響結果大致相同,然而正弦波生成腐蝕膜結構為層狀結構,而方形波所形成的腐蝕膜除層狀腐蝕膜外,尚具有覆蓋形式之沈積膜。
發現在硝酸液中,探討正負半週期電量的影響,隨正半週期電量增加,蝕孔由細小蝕孔轉變為粗大蝕孔,粗化也由均勻粗化轉變成不均勻的粗化的表面,腐蝕膜的厚度也隨正半週期電量增加而遞減,鋁溶蝕量則隨電量增加而增加;負半週期電量增加時,蝕孔變為得更細小,腐蝕膜則呈現單層厚實的沈積,鋁溶蝕量則隨負半週期電量增加而減少。又在鹽酸液中粗化時,當正半週期電量增加時,鋁溶蝕量遞增,蝕孔形貌從粗化轉成電蝕,最後出現粗大的方形蝕孔,且粗化不均勻,正半週期電量於Ta/Tc=10後,蝕孔底部呈現半圓形蝕孔形貌,蝕孔孔壁沈積一層較薄的腐蝕膜;負半週期電量增加時,粗化現象則由均勻分佈的蝕孔轉變成不均勻的粗化,腐蝕膜則是許多孔洞區隔的多層結構,鋁溶蝕量因腐蝕膜的大量沈積而遞減。
最後,在硝酸中探討正負半週期電流密度峰值比值的影響,當負半週期電流密度峰值遞減時,鋁板表面會由粗化轉變成均勻溶蝕,腐蝕膜會轉變成單層的腐蝕膜結構且易從蝕孔表面剝離,但在未受到侵蝕的平坦表面,仍有一層很薄且與鋁底材緊密接合的氧化膜; 當正半週期電流密度峰值遞減時,蝕孔仍為半圓形所構成,但因正半週期電量減少使蝕孔的數目逐漸減少,同時沈積了厚實的層狀結構腐蝕膜。
關鍵字: 平版印刷、電解粗化、腐蝕膜、鋁溶蝕量

ABSTRACT
The mechanisms of etch pit nucleation and growth, and etch film formation were studied via the microstructural characterization and surface property measurement on the electrograined 1050 aluminum lithographic printing plates. Several parameters of ac electrograining were studied, including the frequency, waveform, and the charge and density peak ratio of anodic half cycle to cathodic half cycle of the ac current. One of the two samples prepared at each electrograining batch, was immersed in phosphoric/chromic acid to removed the etch film so as to measure the surface roughness and capacitance of the Al plate, and the weight of dissolved Al and etch film. In addition, the morphology of the etch pit was characterized using scanning electron microscopy (SEM). The other sample was reserved for plane-view SEM and cross-sectional transmission electron microscopy (TEM) obserIation for characterizing the microstructure and composition of the etch film.
When electrograined using sinusoidal ac current with frequency of 1 Hz, the Al plate was dotted with relatively large etch pits. Conversely, the Al plate was uniformly grained at 50 Hz, leading to the formation of relatively fine etch pits. As electrograining frequency was increased to 250 Hz, the Al plate was non-uniformly grained; that is, the area dotted with stripe-like pits coexisted with the area that remained unattacked. Generally, as electrograining frequency increased, the weight of the dissolved Al and the etch film decreased, and each layer of the layered etch film became thinner. Although no discernible difference was made between the sinusoidal and square waveforms as for how the electrograining frequency affected the graining behaviors of the Al plate, the structure of the etch films differed with the current waveform. For example, the etch film exhibited a layered structure when the sinusoidal waveform was used. However, the mouth of the layered etch film formed using the square waveform was further filled with etch products.
With increasing the charge ratio of anodic to cathodic half cycle, the etch pits formed in nitric acid became bigger, resulting in a non-uniformly grained surface. The weight of the dissolved Al increased and that of the etch film decreased with the charge ratio. Conversely, a relatively thick single-layered etch film formed when the charge ratio of cathodic to anodic half cycle was increased. When electrograined in hydrochloric acid, the attack of the Al plate changed from graining to etching as the charge ratio of anodic to cathodic half cycle was increased, leading to the formation of coarse square etch pits. Relatively large hemispherical pits which bases were covered with a thin etch film were observed as the charge ratio exceeded 10. Similarly, the graining changed from uniform to non-uniform as the charge of the cathodic half cycle increased. Meanwhile, the etch film displayed a layered structure with micorvoids residing along the layer boundary.
In stead of electrograining, the Al plate dissolved uniformly into the electrolyte when decreasing the cathodic density peak while kept the anodic density peak constant. Meanwhile, the etch film exhibited a single layered structure, which tended to peel off the Al substrate. A thin oxide film was observed to be adherent to the Al substrate that remained unattacked. Conversely, the population density of the hemispherical pits decreased with decreasing anodic density peak while kept the cathodic density peak constant. Moreover, the etch pit was entirely filled with etch product.
Key Words : lithographic printing, electrograining, etch film, weight of dissolved Al

目 錄
封面內頁
簽名頁
授權書……………………………………………………………………iii
中文摘要…………………………………………………………………v
英文摘要…………………………………………………………………vii
誌謝………………………………………………………………………x
目錄………………………………………………………………………xi
圖目錄……………………………………………………………………xv
表目錄……………………………………………………………………xxii
第一章 導論…………………………………………………………………1
1.1 前言……………………………………………………………1
1.2 研究動機………………………………………………………2
第二章 文獻探討……………………………………………………………3
2.1 平版印刷原理…………………………………………………………3
2.2 電解粗化行為探討……………………………………………………8
2.3 電化學方程式…………………………………………………………8
2.4 電解粗化對表面型態的影響…………………………………………9
2.4.1 底材特性的影響………………………………………………9
2.4.2 電解液的種類…………………………………………………10
2.4.3 電解條件………………………………………………………11
第三章 實驗方法……………………………………………………………13
3.1 鋁底材的前處理……………………………………………………13
3.2 電解粗化模擬設備…………………………………………………13
3.3 粗化操作條件與程序………………………………………………16
3.3.1 實驗製程規劃………………………………………………16
3.3.2 電解粗化程序………………………………………………18
3.4 微觀試片製備與觀察………………………………………………19
3.4.1 掃描式電子顯微鏡試片製作與觀察………………………19
3.4.2 穿透式電子顯微鏡試片製作與觀察………………………21
3.5 表面性質量測………………………………………………………25
3.5.1 靜電容量之量測……………………………………………25
3.5.2 表面粗糙度量測……………………………………………25
3.5.3 鋁板溶蝕量與腐蝕膜重量…………………………………26
第四章 實驗結果………………………………………………………27
4.1 正弦波交流電源頻率的影響………………………………………27
4.1.1 含腐蝕膜之鋁板表面形貌………………………………28
4.1.2 去腐蝕膜之表面形貌……………………………………31
4.1.3 複製模蝕孔結構觀察……………………………………34
4.1.4 蝕孔橫截面TEM觀察……………………………………37
4.1.5 粗化後鋁板表面性質……………………………………45
4.1.6 鋁板溶蝕量與腐蝕膜重量………………………………46
4.2 方形波交流電源頻率的影響……………………………………49
4.2.1 含腐蝕膜之鋁板表面形貌………………………………49
4.2.2 去腐蝕膜之表面形貌……………………………………54
4.2.3 蝕孔橫截面TEM觀察………………………………………58
4.2.4 粗化後鋁板表面性質……………………………………64
4.2.5 鋁板溶蝕量與腐蝕膜重量………………………………64
4.3 方形波交流電源之正負半週期電量比值影響(硝酸)…………68
4.3.1 含腐蝕膜之鋁板表面形貌………………………………68
4.3.2 去腐蝕膜之表面形貌……………………………………74
4.3.3 蝕孔橫截面TEM觀察……………………………………79
4.3.4 粗化後鋁板表面性質…………………………………90
4.3.5 鋁板溶蝕量與腐蝕膜重量………………………………91
4.4 方形波交流電源之正負半週期電量比值影響(鹽酸)…………94
4.4.1 含腐蝕膜之鋁板表面形貌………………………………94
4.4.2 去腐蝕膜之表面形貌……………………………………99
4.4.3 蝕孔橫截面TEM觀察……………………………………104
4.4.4 粗化後鋁板表面性質…………………………………113
4.4.5 鋁板溶蝕量與腐蝕膜重量………………………………113
4.4.6 硝酸與鹽酸電解液中極化曲線之差異…………………117
4.5 方形波交流電源之正負半週期電流密度峰值比值影響………118
4.5.1 含腐蝕膜之鋁板表面形貌………………………………118
4.5.2 去腐蝕膜之表面形貌……………………………………124
4.5.3 蝕孔橫截面TEM觀察……………………………………129
4.5.4 粗化後鋁板表面性質……………………………………142
4.5.5 鋁板溶蝕量與腐蝕膜重量………………………………143
第五章 討論…………………………………………………………146
5.1 交流電源波形的影響……………………………………………146
5.2 正負半週期電量比值的影響……………………………………149
5.2.1 蝕孔特徵…………………………………………………149
5.2.2 腐蝕膜差異………………………………………………151
5.3 電解液種類之電解粗化機制……………………………………154
第六章 結論…………………………………………………………157
第七章 展望…………………………………………………………161
參考文獻……………………………………………………………162
附錄一…………………………………………………………………168
圖目錄
圖2.1 平版印刷板製作流程…………………….……..…….……..4
圖2.2 印刷時水持有性對油墨形貌的影響:(a)持有性差,(b)持有
性佳………………………………………….…….….….…..5
圖2.3 平版印刷的原理…………………..…..….………..…………6
圖2.4 平版印刷用鋁板的粗化方法…………...…………….….….7
圖3.1 電解粗化設備組成示意圖……………..……….………….15
圖3.2 鋁板電解粗化詳細實驗流程……………….………..…….20
圖3.3 蝕孔複製模試片製作流程…………..………….………….23
圖3.4 傳統式橫截面向TEM試片製作流程……….……………..24
圖4.1 含腐蝕膜之鋁板之表面形貌:粗化頻率為(a)1,(b)10,
(c)50,(d) 100,(e) 250,(f) 500 Hz…………...….………….29
圖4.2 含腐蝕膜之鋁板之表面形貌:粗化頻率為(a)1,(b)10,
(c)50,(d) 100,(e) 250,(f) 500 Hz…………...….………….32
圖4.3 蝕孔內部結構之表面形貌:粗化頻率為(a)1,(b)10,(c)50,
(d) 100,(e) 250,(f) 500 Hz…………….………….…….….35
圖4.4 以1Hz交流電源粗化所得試片橫截面TEM照片:(a)圓形
蝕孔與覆蓋的層狀腐蝕膜,(b)厚實腐蝕膜,(c)從圖(a)A
處所得的SAD圖,(d)從圖(b)A處所得的SAD圖……..….29
圖4.5 以50Hz交流電源粗化所得試片橫截面TEM照片:(a)單一
圓形蝕孔與層狀腐蝕膜,(b)圖(a)的局部放大圖顯示腐蝕膜
為黑白對比相間的層狀腐蝕膜,(c)黑色層的EDS圖,(d)
黑色層的SAD圖,(e) 白色層的EDS圖,(d)白色層的SAD
圖……………..…….……………………………………….41
圖4.6 以250Hz交流電源粗化所得試片橫截面TEM照片:(a)非
層狀腐蝕膜,(b)圖(a)的局部放大圖…..…………........…..44
圖4.7 粗化頻率對鋁板表面性質的影響:(a)最大粗糙度與平均粗
糙度,(b) Pc值與表面積增加率……….....…....……....…...47
圖4.8 粗化頻率對(a)鋁溶蝕重量與(d)腐蝕膜重量的影響…...…48
圖4.9 含腐蝕膜之鋁板之表面形貌:粗化頻率為(a) 0.1,(b) 1,(c)
10(d) 50,(e) 100,(f) 250,(g)500,(h) 1000 Hz………...…..51
圖4.10 去腐蝕膜之鋁板之表面形貌:粗化頻率為(a) 0.1,(b) 1,
(c) 10(d) 50,(e) 100,(f) 250,(g)500,(h) 1000 Hz…….….55
圖4.11 以1Hz交流電源粗化所得試片橫截面TEM照片:(a)
半圓形單一圓形蝕,(b)層狀腐蝕膜放大,(c)腐蝕膜由蝕
孔內部向外堆出,(d)層狀腐蝕膜內部之細小顆粒孔沈積
層狀腐蝕膜,(e)A處黑色層的EDS圖,(f)B處白色層的
EDS圖………………………………………………...…...59
圖4.12 以50Hz交流電源粗化所得試片橫截面TEM照片:(a)蝕
孔側向連結形成包旋蝕孔,(b)層狀腐蝕膜外仍有沈積式
腐蝕膜….................…………………………………….....62
圖4.13 以250Hz交流電源粗化所得試片橫截面TEM照片:(a)
腐蝕膜層與層非常密緻,(b)層狀腐蝕膜局部放大….......63
圖4.14 粗化頻率對鋁板表面性質的影響:(a)最大粗糙度與平均
粗糙度,(b) Pc值與表面積增加率……………..…....…....66
圖4.15 粗化頻率對(a)鋁溶蝕重量與(d)腐蝕膜重量的影響…….67
圖4.16 含腐蝕膜之鋁板之表面形貌:Ta/Tc=(a) 1,(b) 2,(c) 4,
(d) 10,(e) 20…………..…..………………….…………....70
圖4.17 含腐蝕膜之鋁板之表面形貌:Tc/Ta=(a) 1,(b) 2,(c) 4,
(d) 10,(e) 20…………..…..………………….…………....72
圖4.18 去腐蝕膜之鋁板之表面形貌:Ta/Tc=(a) 1,(b) 2,(c) 4,
(d) 10,(e) 20…………..…..………………….…………....75
圖4.19 去腐蝕膜之鋁板之表面形貌:Tc/Ta=(a) 1,(b) 2,(c) 4,
(d) 10,(e) 20………..…..…………………….…………....77
圖4.20 Ta/Tc=1時,交流電源粗化所得試片橫截面TEM照片:
(a)圓形蝕孔內部沈積層狀腐蝕膜,(b)層狀腐蝕膜放大81
圖4.21 Ta/Tc=2時,交流電源粗化所得試片橫截面TEM照片:
(a)包旋蝕孔上沈積層狀腐蝕膜,(b)層狀腐蝕膜放大
……..………………………………………….……...….82
圖4.22 Ta/Tc=5時,交流電源粗化所得試片橫截面TEM照片:
(a)包旋蝕孔上沈積較淺的腐蝕膜,(b)腐蝕膜放大圖….83
圖4.23 Ta/Tc=20時,交流電源粗化所得試片橫截面TEM照片:
(a) 單一粗大圓形蝕孔內部堆滿了腐蝕膜,(b)粗大圓形蝕
孔孔壁仍有腐蝕膜堆積(c) A處的EDS成份,(d)A處的SAD圖,(e) B處的EDS成份,(f) B處的SAD圖……….84
圖4.24 Tc/Ta=2時,交流電源粗化所得試片橫截面TEM照片:
(a) 小圓形蝕孔覆蓋一層腐蝕膜,(b)蝕孔內部沈積一層厚
實腐蝕膜………………….…..……….…………….….…87
圖4.25 Tc/Ta=5時,交流電源粗化所得試片橫截面TEM照片:
(a)3個單一蝕孔,蝕孔內部佈滿了單層腐蝕膜, (b)蝕孔局
部放大圖…………………....………………………….….88
圖4.26 Tc/Ta=2時,交流電源粗化所得試片橫截面TEM照片:
(a)未粗化表面, 仍佈滿腐蝕膜,(b)腐蝕膜剝離鋁板表
面…………………………………………………………...89
圖4.27 粗化頻率對鋁板表面性質的影響:(a)最大粗度與平均粗
糙度,(b) Pc值與表面積增加率…….…………….…..…92
圖4.28 粗化頻率對(a)鋁溶蝕重量與(d)腐蝕膜重量的影響…….93
圖4.29 含腐蝕膜之鋁板之表面形貌:Ta/Tc=(a) 1,(b) 2,(c) 4,
(d) 10,(e) 20…………...…………………………………..95
圖4.30 含腐蝕膜之鋁板之表面形貌:Tc/Ta=(a) 1,(b) 2,(c) 4,
(d) 10,(e) 20…………...…………………...……………..97
圖4.31 去腐蝕膜之鋁板之表面形貌:Ta/Tc=(a) 1,(b) 2,(c) 4,
(d) 10,(e) 20…………...……………...………………….100
圖4.32 含腐蝕膜之鋁板之表面形貌:Tc/Ta=(a) 1,(b) 2,(c) 4,
(d) 10,(e) 20…………...……………………...………….102
圖4.33 Ta/Tc=2時,交流電源粗化所得試片橫截面TEM照片:
(a) 鹽酸電解液所形成方形蝕孔結構,(b)細小方形蝕孔放
大圖……...……………………………………..…………105
圖4.34 Ta/Tc=10時,交流電源粗化所得試片橫截面TEM照片:
(a) 較大的方形蝕孔底部為半圓形蝕孔形貌,蝕孔壁上有
較薄腐蝕膜沈積,(b)未受到粗化表面,仍沈積一層較薄的腐蝕膜………………………………….……………………….106
圖4.35 Tc/Ta=2時,交流電源粗化所得試片橫截面TEM照片:
(a) 蝕孔被腐蝕生成物所覆蓋滿,(b)包旋蝕孔孔壁上有細
小蝕孔,腐蝕膜內部有排列整齊的孔洞,(c)包旋蝕孔內
部沈積多層的腐蝕膜,(d)腐蝕膜內部有明顯的孔洞且腐
蝕膜為層狀結構……………………...…..………...……107
圖4.36 Tc/Ta=5時,交流電源粗化所得試片橫截面TEM照片:
(a) 厚實的層狀腐蝕膜結構,(b)排列整齊的氣泡區隔構成
多層結構,(c)A處灰色層EDS圖,(d)B處白色層EDS圖,
(e)C處黑色層EDS圖……………………………………109
圖4.37 Tc/Ta=10時,交流電源粗化所得試片橫截面TEM照片:
(a) 腐蝕膜呈層狀結構,蝕孔表面較平坦,(b)層狀腐蝕
膜……………...………………………………….…....….111
圖4.38 Tc/Ta=20時,交流電源粗化所得試片橫截面TEM照片:
(a) 厚實腐蝕膜剝離蝕孔表面,(b)腐蝕膜與蝕孔界面有較
大的氣泡....………………………………………...……..112
圖4.39 粗化頻率對鋁板表面性質的影響:(a)最大粗糙度與平均
粗糙度,(b) Pc值與表面積增加率…………...…………..115
圖4.40 粗化頻率對(a)鋁溶蝕重量與(d)腐蝕膜重量的影響...…116
圖4.41 電解粗化鋁板於0.16M硝酸與鹽酸溶液中之極化曲線117
圖4.42 含腐蝕膜之鋁板之表面形貌:Ia/Ic=(a) 1,(b) 5/4,(c)
5/2,(d) 5,(e) ∞……………………………...……………120
圖4.43 含腐蝕膜之鋁板之表面形貌:Ic/Ia=(a) 1,(b) 5/4,(c)
5/2,(d) 5,(e) ∞…………………………………...………122
圖4.44 去腐蝕膜之鋁板之表面形貌:Ia/Ic=(a) 1,(b) 5/4,(c)
5/2,(d) 5,(e) ∞…………………………………...………125
圖4.43 去腐蝕膜之鋁板之表面形貌:Ic/Ia=(a) 1,(b) 5/4,(c)
5/2,(d) 5,(e) ∞………………………………...…………127
圖4.46 Ia/Ic=1時,交流電源粗化所得試片橫截面TEM照片:
(a)層狀腐蝕膜結構,(b)層狀腐蝕膜結構………….…....131
圖4.47 Ia/Ic=5/2時,交流電源粗化所得試片橫截面TEM照片:
(a) 較大的蝕孔上沈積一層較薄的腐蝕膜,(b)孔壁上的腐
蝕膜……………………………............…………………132
圖4.48 Ia/Ic=5時,交流電源粗化所得試片橫截面TEM照片:
(a) 厚實的腐蝕膜剝離蝕孔,(b)平坦區域上方沈積一層較
薄的腐蝕膜,(c)A處黑色層EDS圖,(d) B處白色層EDS
圖,(e) C處黑色層EDS圖,(f) D處白色層EDS圖..……133
圖4.49 Ia/Ic=∞時,交流電源粗化所得試片橫截面TEM照片:
厚實的腐蝕膜沈積於蝕孔上,(b)原始表面沈積一氧化膜且緊密附著表面上…………………..…………………..136
圖4.50 Ic/Ia=5/2時,交流電源粗化所得試片橫截面TEM照片:
(a) 包旋孔壁上明顯的層狀腐蝕膜結構,(b)層狀腐蝕膜局
部放大,(c)層狀腐蝕膜內部有許多細小孔洞,(d)層狀組織不明顯,蝕孔佈滿了腐蝕膜且緊密附著表面上……..137
圖4.51 Ic/Ia=5時,交流電源粗化所得試片橫截面TEM照片:
(a) 較大的包旋蝕孔,腐蝕膜緊貼於孔壁上,(b)腐蝕膜為層
狀結構,內部佈滿細小的孔洞,(c)許多細小的蝕孔中佈
滿了厚實層狀的腐蝕膜,(d)腐蝕膜局部放大……….....139
圖4.52 Ic/Ia=∞時,交流電源粗化所得試片橫截面TEM照片:
大部分區域未受到侵蝕,局部區域上有一層很薄的氧化
膜…………………………………………………..….…..141
圖4.52 粗化頻率對鋁板表面性質的影響:(a)最大粗糙度與平均
粗糙度,(b) Pc值與表面積增加率…………..……..…..144
圖4.53 粗化頻率對(a)鋁溶蝕重量與(d)腐蝕膜重量的影響…...145
圖5.1 交流電源波形之蝕孔衍生及腐蝕膜生成差異(a)正弦波,(b)
方形波……………………………………..……………....148
圖5.2 蝕孔與腐蝕膜衍生機制示意圖(a)硝酸,(b)鹽酸..............156
表目錄
表1.1 鋁板合金成份………………………………………………2
表2.1實驗製程規劃………………………………………………17
表3.1試片離子減薄設定參數 …………………………………22

參考文獻
1.H. Terryn, and J. Vereecken and G. E. Thompson, “AC Electrograining of Aluminum”, Trans. IMF, Vol.66, 1988, pp. 116-121.
2.C. S. Lin,C. C. Chang and S.H. Hsieh, “Pit Growth of 1050 Aluminum Plates Electrograined in A Nitric Acid,”Journal of The Electrochemical Society,Vol.147,No.10,October 2000, pp3647-3653.
3.C. S. Lin,C. C. Chang and H.M.Fu,”AC Electrograining of Aluminum Plates in A Hydrochloric Acid,”Materials Chemistry and Physics, 68, 2001, pp 217-224.
4.C. S. Lin and H.M.Fu, “Etch Film and Pit Structure of AA1050 Aluminum Plates Electrograined in Nitric and Hydrochloric Aicds,”Journal of The Electrochemical Society,Vol. 148,No. 3,March 2001, pp 240-246.
5.H. Sakaki, A. Shirai and A.Ohashi, “AC Electrolytically Graining Aluminum Support for Making a Lithographic Plate and Pressensitized Lithographic Printing Plate,” US patent 4301229,1981.
6.B.Kernig, B. Grzemba and G. Scharf, “AC Graining of Lithographic Sheet in Hydrochloric Acid,” Trans. IMF, Vol. 70, No. 4,1992, pp. 190-194.
7.P. Laevers, H. Terryn, J. Vereecken, B. Kernig and B. Grzemba, “The Influence of Manganese on The AC Electrolytic Graining of Aluminum,” Corrosion Science, Vol.38, No.3, 1996, pp. 413-429.
8.G. J. Marshall and J. A. Ward, “Influence of Microstructure on Electrograining Behaviour of Commercial Purity Aluminum Used for Lithographic Printing Plates,” Materials Science and Technology, Vol.11, October 1995, pp. 1015-1023.
9.P. Laevers, H. Terryn, J. Vereecken and G. E. Thompson, “A Study of The Mechanism of A.C. Electrolytic Graining of Aluminum in Hydrochloric and Nitric Acid,” Corrosion Science, Vol.35, Nos.1-4, 1993, pp. 231-238.
10.H. Terryn, J. Vereecken and G. E. Thompson, “The Electrograining of Aluminum in Hydrochloric Acid-Ⅰ. Morphological Appearance,” Corrosion Science, Vol.32, No.11, 1991, pp. 1159-1172.
11.H. Terryn, J. Vereecken and G. E. Thompson, “The Electrograining of Aluminum in Hydrochloric Acid-Ⅱ. Formation of Etch Products,” Corrosion Science, Vol.32, No.11, 1991, pp. 1173-1188.
12.P. Laevers, H. Terryn, and J. Vereecken, “Comparison of the A.C. Electrograining of Aluminum in Hydrochloric and Nitric Acid,” Trans. Inst. Metal Finishing, Vol.70, No.3, 1992, pp. 105-110.
13.J-C. Huang, “The Trend in Aluminum Treatment Technology for Lithographic Printing Plate Application,” Proc. Symp. Aluminum Surface Treat. Tech., 1986, pp. 2-18.
14.A.J. Dowell, “The Alternating Current Etching of Aluminum Lithographic Sheet,” Trans. IMF, Vol.57, 1979, pp. 138-144.
15.G. E. Thompson and G. C. Wood, “The Effect of Alternating Voltage on Aluminum Electrodes in Hydrochloric Acid,” Corrosion Science, Vol.18, 1978, pp. 721-746.
16.C. K. Dyer and R. S. Alwitt, “Surface Changes during A.C. Etching of Aluminum,” J. Electrochem. Soc.,Vol.128, No,2,1981,pp300-305.
17.A.J. Dowell, “The Influence of Metallurgical Features in A.C. Etching for Lithoplates,” Trans. IMF. Vol.64, 1986, pp. 85-90.
18.M. P. Amor and J. Ball, “The Mechanism of Electrograining Aluminum Sheet in Nitric / Boric acid Electrolyte,” Corrosion Science, Vol. 40. No.12, 1998, pp.2155-2172.
19.E. Pliefke, “Process For The Electrochemical Graing Of Aluminum For Use As Printing Plate Supports,” US patent 4671859,1987.
20.J. E. Walls, “Process For The Aluminum Surface Preparation,” US patent ,4502925,1985.
21.J. E. Walls, R. L. Dragon and T. A. Dunder, “Electrograining of Aluminum with Hydrogen Peroxide And Nitric or Hydrochloric Acid, ” US patent,4336113,1982.
22.R. Gumbinner and T-C. Huang, “Process for Electrolytic Graining of Aluminum sheet,” US patent,4052275,1977.
23.M. C. Lloyd and S. C. Parish, ”Process For Electrolytic Graining of Aluminum,” US patent,3980539,1976.
24.A.Nishino and T. Kakei,“Process For Production Aluminum Support For Printing-Plate,” US patent 5045157,1991.
25.K. Aono and H. Sakaki, “Process For Preparing Positive-Acting Photosensitive Lithographic Aluminum Printing Plate Precursor Using Nitric Acid Electrolyte For Graining,” US patent 4824757,1989
26.F. D. Bogar and R. T. Foley, “The Influence of Chloride Ion on Pitting of Aluminum,” J. Electrochem. Soc., April 1972, pp. 462-464.
27.A.Nishino and T. Kakei,“Process for Production Aluminum Suooprt of a Printing plate,” US Patent 5141605,1992 .
28.Gobbetti,”Electrochemical Graining of Aluminum on Aluminum Alloy Surface,” US Patent 5064511,1991.
29.Jen-Chi Huang and Mt Kisco,”Two Step Method for Electrolytically Graining Lithographic Metal plates,” US patent 4721552,1988
30.W. M. Moore, C. T. Chen and G. A. Shira, “A Voltammetric Investigation of AC Corrosion Phenomena at an Aluminium Electrode in Hydrochloric Acid”, Corrosion Science, Vol.40, 1984, 644-649.
31.K. Shimizu, K. Kobayashi, P. Skeldon, G. E. Thompson and G. C. Wood, “An Atomic Force Microscopy Study of the Corrosion and Filming Behaviour of Aluminum”, Corrosion Science, Vol.39, No.4, 1997, 701-718.
32.P. Laevers, A. Hubin, H. Terryn and J. Vereecken, “A Wall-Jet Electrode Reactor and its Application to the Study of Electrode Reaction Mechanisms Part Ⅲ: Study of the Mechanism of the A.C. Electrolytic Gaining of Aluminium in Hydrochloric Acid”, Joural of Applied Electrochemistry, Vol.28, 1998, 387-396.
33.K. Fukuoka and M. Kurahashi, “Effect of Si-Precipitate on the Capacitance of AC-Etching Al- Electrolytic Capacitor Cathode Foil,” 住友輕金屬技報, Vol.31, No.4, 1990, pp. 10-17.
34.Y. Tanno and E. Suganuma, “Resin Replica Technique for SEM ObserIation of Progressive Pits Produced During AC Etching of Aluminum,” 金屬表面技術, Vol.38, No.8, 1987, pp. 31-32.
35.T. Suzuki and Y. Hayashi, “Electrolytic Etching of Aluminum Strip for Lithographic Printing Plates,” 金屬表面技術,Vol. 30, No. 10, 1979, pp. 541-546
36.西川泰久,” Aluminum Sheet for Presensitized Printing Plate,”日本輕金屬學會第49回研討會論文集,1996, pp. 44-51.
37.森 輝雄著, “PS版的歷史與將來”, 1994.pp. 9-14
38.楊邦朝,余忠, “低壓鋁箔交流腐蝕研究”, 電子元件與材料, Feb.1998, pp.9-12.
39.鮮祺振,”金屬腐蝕膜特性探討”,徐氏基金會,1998,pp115-130
40.羅福林,李興才,印刷工業概論,印刷工業研究所,1991.
41.張進春,林招松,“鋁板電解粗化之蝕孔形貌分析”,八七年中國材料科學學會年會論文集(D),pp. 21-24.
42.張進春,傅學明,林招松,“平版印刷用1050鋁板在鹽酸液中電解粗化”,八八年中國材料科學學會年會論文集,No.880235.
43.張進春,”1050鋁板電解粗化之研究”,大葉大學碩士論文,1999,pp11-32.
44.傅學明,李佳盈,林招松“平版印刷1050鋁板以方形波及正弦波電解粗化之研究”,八九年中國材料科學學會年會論文集
45.傅學明,”平版印刷用鋁版電解粗化之研究”,大葉大學碩士論文,2000,pp18-37.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔