跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 19:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳坤城
論文名稱:改良式合成噴射氣流器有限元素模型的建立和實驗的量測與驗證
論文名稱(外文):Finite Element Modeling and Experimental Validation of Newly Improved Synthetic Jet Actuator
指導教授:羅正忠羅正忠引用關係
指導教授(外文):Jeng-Jong Ro
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:72
中文關鍵詞:THUNDER壓電致動器有限元素法主動式氣流控制
外文關鍵詞:Synthetic Jet Actuatorpiezoelectric wafercavityTHUNDERflow control
相關次數:
  • 被引用被引用:5
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
壓電陶瓷(PZT)為鋯鈦酸鉛(Lead Zirconate Titanate)固溶液(solid-solution),於1954年由Jaffe等人發現,其具有的優良壓電特性(piezoelectric properties),壓電性質是一種機械能與電能交互作用的現象。
壓電陶瓷的壓電特性包括正壓電效應與逆壓電效應兩種,正壓電效應係壓電陶瓷受到機械應力或應變作用而使壓電陶瓷表面產生電荷,即是壓電感測器原理,例如:加速規與壓力感測器等。而逆壓電效應則是以電能輸入壓電陶瓷使之產生機械能或位移的輸出,即是壓電致動器原理。
主動式氣流控制的應用上,一直存在著一個最大的問題,就是它現有的制動系統需要相當大的能量去作動。因此一個高效率的主動式制動器在主動式氣流控制的應用上是不可或缺的要素。近幾年來,智慧型材料和結構是一個具有相當潛力的新研究課題,其中智慧型材料製成的主動式制動器也是一項重要的研發領域。制動器的元件包括有記憶合金(SMA)、壓電片(PZT)、電流變液(ER fluid)和磁流變液(MR fluid)等。其中以壓電材料作動的合成氣流噴射器(Synthetic Jet Actuator)經許多研究學者驗證在主動式氣流控制方面展現出良好的控制效率和大量的潛在應用。
計劃的主要目的是建立一個壓電式合成噴射氣流器的有限元素模型,然後應用此模型做性能分析與朝著輕量化、提高效率等方面去做改良。這個模型包括:壓電片中的結構/電場/流場的偶合性質、複合材料結構的特性。藉由這個模型去分析、探討壓電式合成噴射氣流器的最佳化設計─希望找到以最小的電壓輸入,產生最大的位移變形量或作用力時其幾何結構和材料,然後用分析中所發展的最佳化技術去改進壓電式合成噴射氣流器,並測試新致動器的性能,與現今商業生產的THUNDER作一比較。
The primary objective of active flow control research is to develop a cost-effective technology that has the potential for revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. The development of such systems have many implications for aerospace vehicles including: reduced mechanical complexity and hydraulic failure, reduced noise and weight, lower energy and fuel consumption, lower downtime and maintenance, enhanced maneuvering and agility with enhanced aerodynamic performance and safety. Interest in active flow control for aerospace applications has stimulated the recent development of innovative actuator designs that create localized disturbances in a flowfield.
A novel class of devices, known as synthetic jet actuator, has been demonstrated to exhibit promising flow control capabilities including separation control and thrust vectoring. The basic components of a synthetic jet actuator are a cavity and oscillating materials.
The synthetic jet actuator developed at NASA LaRC has a small housing in which a cylindrical cavity was enclosed by two metal diaphragms, 50 mm in diameter, placed opposite each other. A piezoelectric wafer (THUNDER) was attached to the center of the outside face of each metal diaphragm. The pair of piezoelectric metal diaphragms was operated with a 180° phase differential at the same sinusoidal voltage and frequency. With actuation, a synthetic jet issued from a 35.5mm long by 0.5mm wide slot on the top of device.
In this proposed project, a finite element model of synthetic jet actuator developed at NASA LaRC is investigated. The developed finite element model can be utilized to design and determine the performance of synthetic jet actuator. The analysis includes The FE model of piezoelectric actuator, FE model of PZT/circular plate coupled system, FE model of PZT/circular plate/cavity coupled system and experimental validation. The phase-average jet center velocity and amplitude of input voltage of PZT are predicted by this finite element model. The theoretical prediction is compared to experimental results obtained at Da-Yeh university.
封面內頁 ……………………………………………………… i
簽名頁 ………………………………………………………… ii
授權書 ………………………………………………………… iii
中文摘要 ……………………………………………………. v
英文摘要 ……………………………………………………. vii
誌謝 …………………………………………………………… ix
目錄 …………………………………………………………… x
圖目錄 ………………………………………………………… xii
表目錄 ………………………………………………………… xv
符號說明 ……………………………………………………… xvi
第一章 緒論
1.1 壓電性質 ……………………………………… 1
1.2 壓電致動器 …………………………………… 2
1.3 THUNDER ……………………………………. 3
1.4 氣流控制的研究背景 ………………………… 6
1.5 合成氣流簡介 ………………………………… 9
1.6 研究目的及研究重點 ………………………… 12
1.7 研究方法 ……………………………………… 13
1.8 論文章節介紹 ………………………………… 15
第二章 數學理論模型
2.1圓形平板的理論值與有限元素模型 …………. 17
2.1.1 圓形平板的理論值 ……………………… 17
2.1.1 圓形平板的理論值 ……………………… 19
2.2壓電片/平板理論模型 ………………………… 25
2.3流場/平板+壓電片(無致動電壓)理論模型. … 31
2.4平板/壓電陶瓷/流場偶合理論模型…. ……… 33
第三章 實驗量測與數據分析
3.1實驗方法及擊槌測試原理 ……………………. 34
3.1.1 實驗方法 ………………………………… 34
3.1.2實驗裝置…………. ……………………... 37
3.2圓形平板實驗量測……………………. ……… 38
3.3壓電致動圓板的實驗量測……………………. 44
3.3.1無電場偶合作用的自然頻率量測……… 44
3.3.2有電場偶合作用的自然頻率量測………. 46
3.4 以THUNDER取代PZT之效率實驗 ……….. 55
3.5 合成氣流噴射器噴出流速實驗 ……………… 61
第四章 結論與未來工作
4.1 結論 ……………………………………………. 65
4.2 未來工作 ………………………………………. 66
參考文獻 ……………………………………………………… 67
1.Bailo, K. C.; Brei, D. E. and Calkins, F. T. “Investigation of PVdF Active Diaphragms for Synthetic Jets “, Proc.of the SPIE international conference on smart materials and structures, Vol. 3991, p. 220-231, 2000.
2.Rao Singiresu S.’ Engineering Optimization: Theory and Practice’John Wiley & Sons, 3rd edn., 1996.
3. Rao J. S. “Dynamics of Plates”, Marcel Dekker Inc., 1999.
4.Rao Singiresu S.’ The Finite Element Method in Engineering’ Butterworth Heinemann, 3rd edn., 1999.
5.Chen, S. H., Wang, Z. D. and Liu X. H. “Active Vibration Control and Suppression for Intelligent Structures”, Journal of Sound and Vibration, 200(2), pp:167-177, 1997.
6.Freed B. D. and Babuska V, “Finite Element Modeling of Composite Piezoelectric Structures with MSC/NASTRAN”, proceeding of the SPIE international conference on smart materials and structures, vol.3041, pp.676-688, 1997.
7. Ro, J. and Baz, A. “Control of Sound Radiation from a Plate into an Acoustic Cavity Using Active Constrained Layer Damping.” Journal of Smart Materials and Structures, Vol. 8, pp. 292-300,1999
8.Seifert, A., Eliahu, S., Greenblatt, D., and Wygnanski, I., "Use of Piezoelectric Actuators for Airfoil Separation Control", AIAA Journal, 36(8), pp. 1535-1537, 1998.
9.Seifert, A. and Pack, L. G, "Active Control of Separated Flows on Generic Configurations at High Reynolds Numbers", AIAA Paper 99-3403~ 1999.
10.Lachowicz, J. T., Yao, C., and Joslin, R. D., "Physical Analysis and Scaling of a Jet and Vortex Actuator", 1999 Joint ASME/JSME Fluid Engineering Conference, ASME Paper No. FEDSM99-6921, July 1999.
11.Lin, Y.-L., Chyu, M. K., and Shih, T. I-P., "Skin Friction Reduction Through Micro Blowing", AIAA Paper 98-0359, 1998.
12.McManus, K. and Magill, J., "Airfoil Performance Enhancement Using Pulsed Jet Separation Control", AIAA Paper 97-1971, 1997.
13.Amitay, M., Smith, B. L., and Glezer, A., "Aerodynamic Flow Control Using Synthetic Jet Technology", AIAA Paper 98-0208, 1998.
14.Ho, C.-M. and Tai, Y.-C. “Review: MEMs and Its Applications for Flow Control ”, Journal of Fluids Engineering, 118(3), pp. 437-447, 1996.
15.Smith, B. L. and Glezer, A. “Vectoring and Small Scale Motions Effected in Free Shear Flows Using Synthetic Jet Actuators”, AIAA Paper 97-0213, 1997.
16. Allen, M. G. and Glezer, A. “Jet Vectoring Using Zero Mass Flux Control Jets”, AFOSR Worshop at Wright Patterson AFB, 1995.
17.Pack L. G. and Seifert, A. “Periodic Excitation for Jet Vectoring and Enhanced Spreading”, AIAA Paper 99-0672, 1999.
18.Smith, D. R., Kibens, V., Parekh, D. E. and Glezer A. “Thrust Vectoring with Hybrid Synthetic Jet Actuator”, Proc. of the ASME Fluids Engineering Division Summer Meeting, Vancouver, B.C., 1997.
19.Amitay, M., Honohan, A., Trautman, M., and Glezer A., “Modification of the Aerodynamics Characteristics of Bluff Bodies,” AIAA Paper 97-2004, 1997.
20.Smith, D. R., Amitay, M., Kibens, V., Parekh, D. E. and Glezer A “Modification of Lifting Body Aerodynamics Using Synthetic Jet Actuator”, AIAA Paper 98-0209, 1998.
21.Seifert, A., Bachar, T., Koss, D., Shepshelovich, M., and Wygnanski, I. “Oscillatory Blowing: A Tool to Delay Boundary-Layer Seperation”, AIAA Journal, 31(11), 1993.
22.Parekh D. E., Kibens, V., Glezer A, Wiltse J. M., and Smith, D. M., “Innovative Jet Flow Control:Mixing Enhancement Experiments”, AIAA Paper 96-0308, 1996.
23.Roos, F. W., "Synthetic-Jet Microblowing for Forebody Flow-Asymmetry Management", AIAA Paper 98-0212, 1998.
24.Crook, A., Sadri, A. M., and Wood, N. J., "The Development and Implementation of Synthetic Jets for the Control of Separated Flow", AIAA Paper 99-3176, 1999.
25.Mallinson, Samuel G.; Reizes, John A.; Hong, G.; Buttini, M. “Synthetic Jet Actuators for Flow Control”, Proc.of the SPIE international conference on smart materials and structures, Vol. 3891, p. 146-156, 1999.
26.Smith, Douglas R.; Kibens, Valdis; Pitt, Dale M.; Hopkins, Mark A. “Effect of Synthetic Jet Arrays on Boundary Layer Control”, Proc.of the SPIE international conference on smart materials and structures, Vol. 3674, p. 401-409, 1999.
27.Ritchie, B. D. and Seitzman, J. M., "Acetone Mixing Control of Fuel Jets Using Synthetic Technology: Scalar Field Measurements", AIAA Paper 99-0448, 1999.
28.Lee, C. Y. and Goldstein, D. B., "Two Dimensional Synthetic Jet Simulation", AIAA paper 2000-0406, 2000.
29.Davis, S. A.; Glezer, A., “Mixing Control of Fuel Jets Using Synthetic Jet Technology : Velocity Field Measurement”, AIAA Paper 97-0447, 1997.
30.Davis, S. A.; Glezer, A., “The Manipulation of Large- Scales and Small-Scales in Coaxial Jet Using Synthetic Jet Actuators” AIAA Paper 2000-0403, 2000.
31.Chen, Y.; Scarborough, D.; Liang, S.; Aung, K.; Jagoda, J., “Manipulating Pattern Factor Using Synthetic Jet Actuators”, AIAA Paper 2000-1023, 2000.
32.Amitay,M.;Kibens,V.;Parekh,D.;Glezer,A.
33.The Dynamics of Flow Reattachment over a Thick Airfoil Controlled by Synthetic Jet Actuators
34.Chen, Y.; Liang, S.; Aung, K.; Glezer, A., “Enhanced Mixing in a Simulated Combustor Using Synthetic Jet Actuators”, AIAA Paper 99-0449, 1999.
35. A. W. Stephanie, 1997, “Displacement of RAINBOW and THUNDER piezoelectric actuator” Journal of Sensor and actuator Vol.69, p33-38.
36. V. Jayachandran, N. E. Meryer, M. A. Westervelt, J. Q. Sun “Piezoelectrically driven speakers for active aircraft interior noise suppression” Applied Acoustic Vol.57, pp.263.
37.A. J. Tuzzolino, 1996, “Applications of PVDF Dust Sensor System in Space” Adv. Space.Res .Vol.17, pp.123-132.
38. J. K. Song, G.Washington, 1999, “THUNDER Actuator Modeling and Control with Classical and Fuzzy Control Algorithm” Pro. of the SPIE Conference on Smart Structure and Integrated System Vol.3668, pp.836.
39. R. Wieman, R. C. Simth, T. Kackley, Z. Ounaies and J. Bernd, 2001 ,“Displacement Modeling for THUNDER Actuator Having General Load and Boundary Conditions” Pro. of the SPIE Conference on Smart Structure and Integrated System Vol.4326, pp.252-258.
40. V. Balamurugan, S. Narayanan, 2001, “Shell Finite Element for Smart Piezoelectric Composite Plate/Shell Structure and its Application to the Study of Active Vibration Control” Finite Elements in Analysis and Design , Vol.37, pp.713-738.
41.R.Wieman, R.C.Smith, T.Kackly, Z.Ounaies and J.Bernd, 2001, “Displacement Models for THUNDER Actuators Having General Load and Boundary Conditions ” Smart Structure and Material Vol.4326, p252-263.
42.J.Mulling, T.Useher, etc. 2001, “Load Characterization of High Displacement Piezoelectric Actuators with Various end Conditions” Sensors and Actuators Vol.94, p19-24.
43.V.M.Franco, M.M.Soares, A.M.Soares, 1999, “A Numerical Model for the Optimal Design of Composite Laminated Structure with Piezoelectric Laminate” Part of the SPIE Conference on Mathematic and Control, Vol.3667, p427-437.
44.Z.Wang, S.H.Chen, W.Han, 1997, “The Static Shape Control for Intelligent Structure” Finite element in Analysis and Design, Vol.26, p303-314.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top