跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 11:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:嚴偉峰
研究生(外文):Wei-Feng Yen
論文名稱:臥式擠壓鑄造冶金參數及製程參數對鋁基碳化矽顆粒複合材料流動性之影響
論文名稱(外文):Influence of Metallurgical Parameters and Process Parameters on the Fluidity of Al/SiCp Composites by Horizontal Squeeze Casting
指導教授:胡瑞峰
指導教授(外文):Jui-Feng Hu
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:143
中文關鍵詞:擠壓鑄造鋁基碳化矽顆粒複合材料流動性冷卻速率
外文關鍵詞:Squeeze castingAl-matrix SiCp compositesFluidityCooling rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要目的係在探討壓力製程參數對鑄造鋁基(A356.2、A413.1及A390.1鋁合金)碳化矽顆粒(SiCp)複合材料流動性之影響,並分析對三種鋁基碳化矽顆粒複合材料(AMC/SiCp)之流動凝固模式對其流動性的影響,以提供使用者以擠壓鑄造(或壓鑄)等製程生產或研究此類材料時之參考。
三種鋁基碳化矽顆粒複合材料所採用的壓力製程參數則包括壓力變化、碳化矽含量、金屬模模溫和鑄件尺寸厚度(代表凝固冷卻速率)等。首先以具有不同厚度之矩形斷面金屬模進行長條型流動性測試(strip casting fluidity test),以量測不同SiCp含量之複合材料在固定澆注溫度下的流動性,並比較實驗結果以瞭解此材在壓力製程下之薄窄模穴內的流動充模能力。其次,量測各種組成的鋁基複合材料在不同截面尺寸厚度之模穴的流動性,藉以瞭解鑄件模數(代表冷卻速率)對複合材料流動性之影響。另外,也量測材料在不同的鑄造壓力下,壓力對複合材料流動性的影響。最後,經由長條型流動性測試鑄件不同位置之金相顯微組織的觀察,以瞭解SiCp在鑄件中的分布情形,進一步探討上述製程參數對複合材料流動性的影響。
研究結果顯示,隨著SiCp添加量之增加,三種鋁基碳化矽複合材料之流動性皆呈現顯著降低之趨勢。而隨著鑄造壓力的提升,複合材料之流動性亦呈現顯著增加之情形;但對於356/SiCp及A390/SiCp複合材料而言,當壓力超過10MPa(106kg/cm2)以上時,其流動性並未有顯著增加,僅是微幅增加而已。其次,增加模具的溫度也可以增加鋁基複合材料的流動性,尤其對薄件(厚2mm)更為明顯。且在同一模具溫度下,A390/SiCp複合材料的流動性優於A413/SiCp複合材料,而A413/SiCp複合材料的流動性高於A356/SiCp複合材料。
本研究亦深入分析長條型流動性鑄件之顯微組織,以瞭解添加SiCp於鋁基材中,其流動凝固模式的改變對複合材料流動性的影響。另外,也觀察不同壓力和模溫之條件下,顯微組織的改變對複合材料流動性的影響。分析結果發現在A356鋁合金中添加SiCp不會改變其流動凝固模式,但因加入的SiCp會增加熔液的固相分率,使熔液黏滯性增加,所以複合材料的流動性會降低;另外,添加SiCp於A413和A390鋁合金中,會改變其流動凝固模式,進而影響複合材料的流動性。其次,增加鑄造壓力會使複合材料顯微組織變得較細緻,進而影響複合材料的流動性。

The aim of this study was to investigate the influence of pressure process parameters, e.g., SiCp content (0~20wt%),metal mold temperature, squeeze pressure (8~13MPa/79~132kg/cm2) and casting thicknesses(representing cooling rate) on the fluidity of three types of Al-matrix SiCp composites (A356/SiCp,A413/SiCp
and A390/SiCp).
The experimental results indicate that the fluidity of three
types of Al-matrix SiCp composites tend to decrease with the increase of SiCp content and tend to increase with the increase of squeeze pressure. When the SiCp content added is more than 5wt% for the A356/SiCp composite, the fluidity will decrease. While, the SiCp content added is more than 10wt% for the A413/SiCp and A390/SiCp composite, the fluidity will decrease. In addition, compared A356/SiCp with A390/SiCp composites at different pressures, the fluidity is increased with pressure. However, the pressure affecting on fluidity for A356/SiCp or A390/SiCp composites have a threshold limit value, about 10.4MPa/106kg/cm2. Above threshold limit value, the fluidity is not clearly increased. In addition, the fluidity of composites is also increased with the increase of casting thickness for any composion of A356/SiCp、A413/SiCp and A390/SiCp composites.
Furthermore, the microstructure observation at different positions of strip casting were performed to correlate the solidification modes with the fluidity of three types of Al-matrix SiCp composites. Compared with the original aluminum matrix alloys, the solidification modes of A356/SiCp alloys does not change for any content of SiCp added. But A413/SiCp and A390/SiCp alloy is change for any content SiCp added. The structure at the strip casting of Al-matrix SiCp composites poured at high mold temperature or under high squeeze pressure reveals fine microstructure.
Keywords:Squeeze casting, Al-matrix SiCp composites, Fluidity,
Cooling rate

目錄
封面內頁
簽名頁
授權書………………………………………………………………………iii
中文摘要……………………………………………………………………v
英文摘要……………………………………………………………………vii
誌謝…………………………………………………………………………ix
目錄…………………………………………………………………………x
圖目錄………………………………………………………………………xiii
表目錄………………………………………………………………………xxii
符號說明 …………………………………………………………………xxiii
第一章 前言………………………………………………………………1
第二章 文獻探討…………………………………………………………3
2.1 金屬基複合材料的製造方法………………………………4
2.2 擠壓鑄造……………………………………………………6
2.2.1 製造過程與分類……………………………………7
2.2.2 擠壓鑄造的優點……………………………………7
2.3 潤濕性………………………………………………………8
2.3.1 強化材顆粒與熔液間之潤濕性……………………9
2.3.2 溫度對界面潤濕性的影響…………………………9
2.3.3 合金元素對潤濕性的影響…………………………10
2.4 壓力效應……………………………………………………12
2.4.1 壓力對熱傳導性的影響……………………………12
2.4.2 壓力對健全度的影響………………………………12
2.4.3 壓力對相平衡圖的影響……………………………12
2.4.4 壓力對偏析的影響…………………………………16
2.5 流動性………………………………………………………16
第三章 實驗方法及步驟…………………………………………………33
3.1 實驗設計……………………………………………………33
3.1.1 流動性測試…………………………………………33
3.1.2 複合材料之基材……………………………………34
3.1.3 複合材料之強化材…………………………………34
3.1.4 金屬模模溫…………………………………………34
3.1.5 油壓驅動壓力和鑄造壓力…………………………34
3.2 實驗設備及裝置……………………………………………35
3.2.1 攪拌設備……………………………………………35
3.2.2 壓力鑄造設備………………………………………35
3.2.3 長條型流動性測試金屬模…………………………35
3.3 複合材料熔煉與處理………………………………………36
3.3.1 備料…………………………………………………36
3.3.2 預熱碳化矽顆粒……………………………………36
3.3.3 熔煉…………………………………………………36
3.3.4 攪拌器烘烤…………………………………………37
3.3.5 SiCp顆粒之添加與攪拌……………………………37
3.3.6 模具加熱和離型劑之噴覆…………………………37
3.4 流動性測試…………………………………………………38
3.5 金相組織觀察與分析………………………………………38
3.5.1 光學顯微鏡(OM)觀察………………………………38
第四章 結果與討論………………………………………………………44
4.1 長條型金屬模流動性測試…………………………………44
4.1.1 碳化矽添加量對複合材料流動性之影響…………44
4.1.2 鑄造壓力對複合材料流動性之影響………………46
4.1.3 流道厚度對複合材料流動性之影響………………47
4.1.4 模溫對複合材料流動性之影響……………………48
4.2 製程參數對流動凝固模式和流動性之影響………………49
4.2.1 添加SiCp對流動凝固模式和流動性之影響………49
4.2.1.1 A356/SiCp流動凝固模式和流動
性之關係 ………………………………49
4.2.1.2 A413/SiCp流動凝固模式和流動
性之關係 ………………………………52
4.2.1.3 A390/SiCp流動凝固模式和流動
性之關係 ………………………………54
4.2.2 鑄造壓力對凝固模式和流動性之影響……………57
4.2.3 模具溫度對凝固模式和流動性之影響……………59
4.2.4 流道厚度(冷卻速率)對凝固模式和流動性
之影響………………………………………………61
第五章 結論………………………………………………………………138
參考文獻 …………………………………………………………………140

1. T. W. Chou, A. Kelley and A. Okura;Composites, 16, 1986,
p.187.
2. S. J. Harris;Materials Science and Technology, vol.4, 1988,
p.231.
3. M. W. Mahoney and A. K. Ghosh;Metallurgical Transactions,
vol. 18A, 1987, p.653.
4. P. K. Rohatgi, R. Asthana and S. Das, “Solidification,
Structure, and Properties of Cast Metal-ceramic Particle
Composites,” International Metals Reviews, vol. 31, no. 3,
1986, pp.115-139.
5. D. Huda, M.A. El Baradie and M. S. J. Hashmi, “Metal-matrix
composites:Materials aspects. PartⅡ,” Journal of
Materials Processing Technology, 37, 1993, pp.529-541.
6. F. M. Yarandi, P. K. Rohatgi and S. Ray, “Casting Fluidity
of Aluminum A356-SiC Cast Particulate Composite,” AFS
Trans., vol.100, 1992, pp.575-582.
7. P. Meyer, P. Hottebart, P. Malletroit, D. Massinon and F.
Plumail, “MMC Developments at Montupet:An Overview,” AFS
Trans., vol.102, 1994, pp.653-664.
8. E. F. Crawley and M. C. Van, J. Compos. Mater., 21, 1987,
p.553.
9. ASM Metals Handbook, vol. 2, 10th ed., 1990, pp.121-133.
10. D. Huda, M.A. El Baradie and M. S. J. Hashmi, “Metal-
matrix Composites:Manufacturing Aspects. Part I,” Journal
of Materials Processing Technology, 37, 1993, pp.513-528.
11. ASM Metals Handbook, vol.15, 9th ed., 1983, pp.840-854.
12. V. M. Plyatskii, “Extrusion Casting,” 1965.
13. S. Rajagopal and W. H. Altergott, “Quality Control in
Squeeze Casting of Aluminum,” AFS Trans., vol.93, 1985,
pp.145-154.
14. J. R. Franklin and A. A. Das:”Squeeze casting a review of
the status,” The Britisch Foundrymen, vol.77, 1984, pp.150-
158.
15. G. Willams and K. M. Fisher, Metal Technology, p.263, July,
1984.
16. M. W. Toaz, Imperial Clevite Inc., Cleveland, OH,”
Selective Fiber Reinforcement:A New Forntier in Casting
Technology,” AFS Transactions, vol.94, 1986, pp.747-752.
17. S. Okada, N. Fujii, A. Goto, S. Moroimoto and T. Yasuda, ”
Development of a Fully Automatic Squeeze Casting Machine,”
AFS Transactions, vol.90, 1982, pp.135-146.
18. G. Fortin, P. Louchez, F. H. Samuel, “Factors Controlling
Heat Transfer Coefficient at the Metal-Mold Interface
During Solidification of Aluminum Alloys:An Analytical
Study,” AFS Transaction, vol.100, 1992, pp.863-871.
19. N. Yamamoto, M. Itamura and T. Ueno, “Effect of Squeeze
Casting Process on Mechanical Properties of Aluminum Die
casting alloy,” AFS, vol.100, 1992, pp.539-546.
20. ELM International, Inc., East Lansing, Michigan, “Product
Design and Specifications for Squeeze casting,” Oct. 1993,
pp.1-28.
21. A. W. Neumann, J. Szekely, E. J. Rabenda and Jr., J.
Olloid:Interface Sci., 43, 1993, p.727.
22. C. G. Levi, G. J. Abbaschian and R. Mehrabian, Metall.
Trans. A, vol.9A, p.697, 1978.
23. M. K. Surappa and P. K. Rohatgi, “Preparation and
Properties of Cast Aluminum-ceramic Particle Composites,”
Journal of Materials Science, 16, 1981, pp.983-993.
24. A. Mortensen : Materials Science and Engineering, vol.135,
1991, pp.1-11.
25. J. Hashim, L. Looney and M. S. J. Hashmi, “Metal Matrix
composites:Production by the Stir Casting Method,”
Journal of Materials Processing Technology, vol. 92,
August, 1999, pp.1-7.
26. A. Amaro, D. Yamamoto, A. Garcia, C. Atlatenco, I. Beltran,
C. Gonzalez and A. Sanchez, “Modification and Refinement
Treatment in Cast Al-Si/SiC Particle Composites,” AFS
Trans., vol. 102, 1994, pp.943-948.
27. D. L. Rose, B. M. Cox and M. D. Skibo, “Degassing and
Cleaning of Al-Based SiC Particle Reinforced Composites,”
AFS Trans., vol. 101, 1993, pp.619-626.
28. M. C. Luken, T. X. Hou and R. D. Pehlke, “Mold/Metal Gap
Formation of Aluminum A356 Cylinders Cast Horizontally in
Dry and green Sand,” AFS Transactions, vol. 98, 1990,
pp.63-70.
29. Kai Ho and Robert D. Pehlke, “Metal-Mold Interfacial Heat
Transfer,” Metallurgical Transactions B, vol. 16B, Sep.
1985, pp.583-594.
30. K. Ho and R. D. Pehlke, “Transient Method for
Determination Metal-Mold Interfacial Heat Transfer,” AFS
Transactions, vol. 91, 1983, pp.689-698.
31. 翁震杰, “壓力對鋁合金凝固現象之影響”,鑄工,第77期,民國82
年6月,pp.54-59.
32. Shunsaku Komatsu and Yoshinobu Kanoh, “Development and
MassProduction of Squeeze Casting Technique,” 鑄物,第64卷
(1992)第3號.
33. D. Argo, J. E. Gruzleski, “Porosity in Modified Aluminum
Alloy Casting,” AFS Transactions, vol. 96, 1988, pp.65-74.
34. G. K. Sigworth and Exton, “A Scientific Basis For
Degassing Aluminum Alloy Casting,” AFS Transactions, vol.
95, 1987.
35. V. A. Ravi, D. J. Frydrych and A. S. Nagelberg, “Effect of
Particle Size, Shape and Loading on the Fluidity of SiC-
Reinforced Aluminum MMCs,” AFS Transactions, vol. 102,
1994, pp.891-895.
36. P. K. Rohatgi, R. Sathyamoorthy, C. S. Narendranath and D.
Nath, “Studies on Casting Characteristics and Settling
Behavior of Al-Base SiC-Particle Metal Matrix
Composities,” AFS Trans., vol. 101, 1993, pp.597-604.
37. D. Nath and P. K. Rohatgi, “Fluidity of Mica Particle
Dispersed Aluminum-SiC Composites,” Composite Science and
Technology, 35, 1898, p.159.
38.胡瑞峰, 86年, “鋁-矽(鎂)系合金及鋁-矽-銅系合金流動性之研
究,” 國立台灣大學機械工程學研究所博士論文
39. M. K. Surappa, P. K. Rohatgi:Metall. Trans., vol. 12B,
1981, p.327.
40. M. C. Fleming, F. R. Mollard, E. F. Niiyama and H. F.
Taylor, “Fluidity of Aluminum,” AFS Trans., vol.68, 1962,
pp.1029-1039.
41. F. M. Yarandi, P. K. Rohatgi and S. Ray : Journal of
Materials Engineering and Performance, vol.2(3), 1993,
p.359.
42. P. K. Rohatgi, F. M. Yarandi and Y. Liu, in Proceeding of
International Symposium on Advances in Cast Reinforced
Metal Composite, Materials Park, OH:ASM International
Publication, 1988, p.249.
43. E. L. Kotzin : Metalcaster’s Reference and Guide, 1st
edition, 1972, p.261.
44. D. J. Jeffrey and A. Acrivos:J. Amer. Inst. Chem. Eng.,
vol. 22(3), 1976, pp.417-432.
45. C. R. Loper, Jr., “Fluidity of Aluminum-Silicon Casting
Alloys,” AFS Trans., vol. 98, 1992, pp.533-538.
46. E. N. Pan and J. F. Hu, “Fluidity of Al-Si(Cu) Alloy as
Affected by Alloy Solidification Mode”, AFS Tran.,
vol.106, 1998, pp.609-617.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top